
A Framework for Differential Privacy Against Timing Attacks

Zachary Ratliff∗ Salil Vadhan†

September 2024

Abstract

The standard definition of differential privacy (DP) ensures that a mechanism’s output dis-
tribution on adjacent datasets is indistinguishable. However, real-world implementations of DP
can, and often do, reveal information through their runtime distributions, making them suscep-
tible to timing attacks. In this work, we establish a general framework for ensuring differential
privacy in the presence of timing side channels. We define a new notion of timing privacy, which
captures programs that remain differentially private to an adversary that observes the program’s
runtime in addition to the output. Our framework enables chaining together component pro-
grams that are timing-stable followed by a random delay to obtain DP programs that achieve
timing privacy. Importantly, our definitions allow for measuring timing privacy and output pri-
vacy using different privacy measures. We illustrate how to instantiate our framework by giving
programs for standard DP computations in the RAM and Word RAM models of computation.
Furthermore, we show how our framework can be realized in code through a natural extension
of the OpenDP Programming Framework.
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1 Introduction

The framework of differential privacy (DP) [DMNS06] is used extensively for computing privacy-
preserving statistics over sensitive data. A differentially private algorithm has the property that
close inputs map to indistinguishable output distributions. Here, “close” and “indistinguishable”
are often given by various metrics and probability distance measures respectively (§2). For ex-
ample, algorithms that compute dataset statistics commonly require that adding or removing any
individual’s data does not change the probability of outputting any given value by more than a
constant factor. More formally, the definition of differential privacy is given as follows.

Definition 1 (Differential Privacy [DMNS06, DKM+06]). Let M : X → Y be a randomized func-
tion. We say M is (ε, δ)-differentially private if for every pair of adjacent datasets x and x′ and
every subset S ⊆ Y

Pr[M(x) ∈ S] ≤ eε · Pr[M(x′) ∈ S] + δ

When δ = 0 we say that M satisfies pure differential privacy. Intuitively, this property guarantees
that the result of a statistical analysis is essentially the same regardless of the presence or absence
of any individual’s data. Notable examples of differential privacy in practice include the US Census
Bureau [Abo18, MKA+08], Apple [G+16], Facebook [MDH+20], and Google [ABC+20] who have
deployed DP to expand access to sensitive data while protecting individual privacy. DP has also
been applied to problems that are not explicitly about privacy-preserving statistics such as private
machine learning [ACG+16, PSM+], adaptive data analysis [BNS+16, DFH+15, NR18], anonymous
messaging [LGZ18, TGL+17, VDHLZZ15], and distributed analytics [RNM+21, RZHP20].

Unfortunately, implementing differential privacy faithfully is a tricky business. Algorithms that
are proven on paper to achieve differential privacy are eventually implemented and ran on hardware
with various resource constraints. These constraints can lead to discrepancies between the compu-
tational model used in the privacy proof and the actual implementation, potentially invalidating the
algorithm’s privacy guarantees. For example, many mathematical proofs in the DP literature as-
sume exact arithmetic over the real numbers while their implementations instead use finite-precision
floating-point or integer arithmetic. Such inconsistencies have led to faulty implementations of text-
book mechanisms that do not actually achieve differential privacy [CSVW22, JMRO22, Mir12], and
prompted new research on differential privacy in finite models of computation [BV18, CKS20]. In a
similar vein, real-world implementations of differential privacy are often exposed to observable side
channels that are not modeled in the definition of differential privacy. For instance, in the online
query setting, where an analyst submits a query and receives a differentially private response, the
analyst observes not only the query’s output but also the query’s execution time. Leveraging the
timing of operations to learn otherwise protected information is known as a timing attack, and prior
work has demonstrated that such attacks can be used to violate differential privacy. For example,
Haeberlen, Pierce, and Narayan showed how user-defined queries can be used to leak the presence
of records in a sensitive dataset via their running time [HPN11]. More recently, Jin, McMurtry,
Rubinstein, and Ohrimenko discovered that the runtime of discrete sampling algorithms (specifi-
cally, the Discrete Laplace [GRS12] and Discrete Gaussian [CKS20]) can reveal the magnitude of
their sampled noise values [JMRO22]. Leaking the sampled noise value can result in a violation of
DP since it can be used to remove the noise and hence the privacy protection from the output of
the algorithm.

Despite some growing awareness of timing attacks on differential privacy, prior work has fo-
cused on ad hoc mitigation strategies that typically apply to a single class of differentially private
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mechanisms1 or database system [HPN11, BV18, AR23]. The most commonly suggested strategy
has been to enforce constant-time program execution. However, enforcing constant-time execution
inherently limits the amount of data that the program can process. The program must either
truncate the input (e.g., by performing subsampling) or reveal an upper bound on the accepted
dataset size. Constant-time programs also come with a significant performance cost, as fast com-
putations must be padded to take the same amount of time as the slowest possible computation.
However, constant-time program execution is overkill. It prevents all information leakage from
the runtime, whereas differential privacy only requires that executions over neighboring inputs are
indistinguishable.

To avoid enforcing constant-time program execution, Haeberlen et al. suggested making the pro-
gram’s runtime differentially private by adding random delay before returning the output [HPN11].
This approach mimics that of adding noise to the program’s output to achieve differential privacy.
However, this proposal is incomplete because it does not specify

(1) What it means for a program’s runtime to be differentially private? and

(2) How much delay, and from what distribution, is necessary to achieve that definition of privacy?

New definitions and theorems are needed to precisely reason about the privacy guarantees of
such programs in the presence of timing side channels.

1.1 Our Results

To reason about timing side channels, we need to reason about programs rather than functions.
The behavior of programs includes both the program’s output and runtime, which can depend on
the program’s execution environment. This might include, for example, the current state of cache
memory or any resource contention caused by concurrent program execution (see Section 2.1 below
for more on execution environments). For this reason, we explicitly generalize the definition of
differential privacy to this setting.

Definition 2 ((ε, δ)-Differentially Private Programs). Let E be the set of possible execution envi-
ronments for a fixed computational model and let P : X × E → Y × E be a randomized program.
We say P is (ε, δ)-differentially private if for every pair of adjacent datasets x and x′, every pair
of input-compatible execution environments env, env′ ∈ E, and every subset S ⊆ Y

Pr[out(P (x, env)) ∈ S] ≤ eε · Pr[out(P (x′, env′)) ∈ S] + δ

where out(P (x, env)) indicates P ′s output value y ∈ Y.

Given this more generalized definition, we define a new notion of privacy with respect to timing
attacks. Specifically, our definition asks that the running time of a program is differentially private
conditioned on the output of the program. For the special case of pure DP, our definition is as
follows:

Definition 3 (ε-Timing Privacy, special case of Def. 31). Let P : X × E → Y × E be a (possibly)
randomized program. Then we say that P is ε-timing-private if for all adjacent x, x′ ∈ X , all

1The differential privacy literature uses the word “mechanism” to refer to a randomized algorithm. Since our work
focuses primarily on actual implementations of such mechanisms within a computational model, we will instead use
the term “programs” throughout the paper.
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pairs of input-compatible execution environments env, env′ ∈ E, all y ∈ supp(out(P (x, env))) ∩
supp(out(P (x′, env′))), and all S ⊆ T

Pr[TP (x, env) ∈ S|out(P (x, env)) = y] ≤ eε · Pr[TP (x
′, env′) ∈ S|out(P (x′, env′)) = y]

where TP (x, env) denotes the running time of P on input x in execution environment env,
T ⊆ R≥0 represents the units in which we measure time (e.g., T = N if we count the number of
executed instructions), and out(P (x, env)) indicates the program’s output.

Intuitively, this definitional approach provides several benefits, one of which is that it enables
measuring timing privacy using a different privacy measure than that used to measure output
privacy. For example, one can be measured by approximate DP and the other with Rényi DP. This
feature is useful since one generally compromises on utility to achieve output privacy, while one
can instead compromise on efficiency (longer runtimes) to achieve timing privacy. In contrast, a
previous definition of Ben Dov, David, Naor, and Tzalik [BDDNT23] (which we rename2) couples
the leakage of the output and the runtime:

Definition 4 ((ε, δ)-Joint Output/Timing Privacy [BDDNT23], special case of Def. 34). Let P :
X ×E → Y×E be a (possibly) randomized program. Then we say that P is ε-jointly output/timing-
private if for all adjacent x, x′ ∈ X , all pairs of input-compatible execution environments env, env′ ∈
E, and for all S ⊆ Y × T

Pr[(out(P (x, env)), TP (x, env)) ∈ S] ≤ eε · Pr[(out(P (x′, env′)), TP (x
′, env′)) ∈ S] + δ

This is the standard definition of DP applied to the joint random variable of the program’s out-
put and running time. We show that in the case of pure-DP (δ = 0), joint output/timing privacy is
equivalent to output privacy together with our definition of timing privacy up to a constant factor in
ε. More generally, our definition together with output privacy implies joint output/timing privacy
when both output and timing privacy are measured using the same privacy measure (Lemma 36).

We establish a general framework for chaining together timing-stable programs (programs where
close inputs map to close runtime distributions) with timing-private delay programs (programs that
add random delay before releasing their output) such that the entire execution is timing-private.
DP software libraries such as OpenDP [GHV20, SVM+] and Tumult Core [BBD+22] support the
concatenation of multiple data operations, such as clamping, summation, and adding noise from a
distribution, into a unified mechanism. Our framework enables examining how adjacent datasets
impact the execution time of modular components within such a chain. A single timing delay can
then be applied before returning the mechanism’s output to safeguard the entire chain against
timing attacks.

To illustrate how our framework can be instantiated, we provide concrete examples of RAM and
Word RAM programs that satisfy our notion of timing privacy when we treat each RAM instruc-
tion as a single time step. These include mechanisms for computing a randomized response, private
sums, and private means (Section 6). Notably, our mechanisms are often much more efficient than
constant-time constructions. We also describe mechanisms that achieve timing privacy in the un-
bounded DP setting and have accuracy that matches their non-timing-private counterparts.

2Ben Dov et al. described mechanisms that meet this criteria as differentially private time oblivious mechanisms.
We will instead use the more informative term jointly output/timing-private.
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To show the compatibility of our framework with existing libraries for differential privacy, we im-
plement a proof-of-concept timing-privacy framework within the OpenDP library [SVM+]. Our
implementation supports the tracking of timing stability across dataset transformations, and in-
cludes an implementation of a timing-private delay program for delaying the output release to
achieve timing-privacy. This proof-of-concept is only meant to show how our framework can be
easily implemented on top of existing frameworks, not to provide actual guarantees of privacy
against an adversary who can measure physical time, which we leave as an important direction for
future work.

1.2 Future Work

We have shown how one can rigorously reason about timing privacy in idealized computational
models (like the RAM and Word-RAM models) where every instruction is assumed to take the
same amount of time. On physical CPUs, this assumption does not hold and the varying time for
different operations has been used as the basis for past timing attacks [AKM+15]. Nevertheless,
we believe that our framework can be fruitfully applied to physical computations with suitably
constrained execution environments. Importantly, our notion of timing stability does not require
precise estimates of computing time, but only an upper bound on the time difference that one
individual’s data can make on a computation, which seems feasible to estimate in practice.

Another direction for future work is to design timing-private and timing-stable programs for
a wider array of mechanisms and transformations from the differential privacy literature. Some
examples of interest would be the Discrete Gaussian Mechanism [CKS20] and forms of the Ex-
ponential Mechanism [MT07], as well providing user-level privacy on datasets where a user may
contribute many records, and node-level privacy on graphs. Getting timing privacy for DP algo-
rithms that involve superlinear-time operations such as sorting (e.g. approximate medians via the
exponential mechanism [MT07]) or pairwise comparisons (e.g. the DP Theil-Sen linear regression
algorithm [AMS+22]) are also an intriguing challenge, because timing-stable programs must have
O(n) runtime (Lemma 30).

Finally, from a theoretical point of view, it is interesting to explore the extent to which pure
timing privacy is achievable. Our examples of timing-private programs mostly come from adding
random delays to timing-stable programs, which seems to inherently yield approximate DP (i.e.
δ > 0). Ben-Dov et al. [BDDNT23] show some limitations of what can be achieved with pure DP,
but their result does not rule out many useful DP computations (such as a RAM program that
randomly samples O(1) records from a dataset and then carries out a constant-time DP computation
on the subsample, which achieves perfect timing privacy even on unbounded-sized datasets).

2 Preliminaries

2.1 Models of Computation

The runtime of a program is determined by its computational model. For instance, within the
idealized RAM model, runtime is typically measured by the number of executed instructions until
halting. Conversely, for a C program running on an x86 architecture, runtime might be quantified
in CPU cycles, though the same program on identical hardware can exhibit varied runtimes due to
differences in microcode patches [Sta03]. Moreover, runtime can be affected by non-deterministic
factors like cache interference from concurrent executions on modern CPUs. Thus, we allow a
program’s output and runtime to depend on an execution environment env ∈ E , where an execution
environment is defined to be any state stored by the computational model that affects program
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execution (e.g., the contents of uninitialized memory, the program’s input, the initial values stored
in CPU registers, etc.). We consider the program’s input to be part of the program’s execution
environment and say that supp(P (x, env)) = ∅ if the input and environment are incompatible.

Definition 5 (Input/Environment Compatibility). Our computational models come with an in-
put/environment compatibility relation, and when an environment env ∈ E is incompatible with an
input x ∈ X for program P , we define supp(P (x, env)) = ∅.

The compatibility of a given (x, env) pair depends on the computational model. For example,
the calling convention for C functions on modern x86 hardware require the EBP and ESP registers,
which indicate the base and top of the stack, to specify the function’s stack frame in memory. If these
registers point to conflicting memory locations or do not contain the correct setup for the function’s
input arguments, the execution environment would be incompatible with the function’s input. We
give further examples of such incompatible input/environment pairs below when discussing the
RAM model below.

Definition 6 (Program Execution). A randomized program P : X × E → Y × E takes in an input
x ∈ X , and an execution environment env ∈ E, and outputs a value y ∈ Y denoted by the random
variable out(P (x, env)). The execution of P may also induce changes on the environment, and we
indicate the new state of the environment as the random variable outenv(P (x, env)).

Definition 7 (Program Runtime). Suppose that our computational model’s runtime is measured
in units T ⊆ R≥0 (e.g., T = N if runtime measures the number of executed instructions). Then we
denote the runtime of program P : X × E → Y × E within execution environment env on input x
to be the random variable TP (x, env) ∈ T .

We can drop the environment env from our notation when a program’s output and runtime
is independent of the environment. We call such programs pure to follow standard programming
languages terminology, but not to be confused with pure DP.

Definition 8 (Output-Pure Programs). A program P : X × E → Y × E is output-pure if there
exists a (possibly randomized) function f : X → Y such that for all x ∈ X and all input-compatible
env ∈ E, f(x) is identically distributed to out(P (x, env)).

Definition 9 (Timing-Pure Programs). A program P : X × E → Y × E is timing-pure if there
exists a (possibly randomized) function f : X → T such that for all x ∈ X , and all input-compatible
env ∈ E, f(x) is identically distributed to TP (x, env).

We remark that the standard definition of differential privacy implicitly assumes that programs
are output-pure, and in fact, its composition and post-processing theorems fail if that is not the case.

RAM Model. In this work, we will use the idealized RAM and Word RAM models of computation
to give proof-of-concept results on how our framework can be used. Applying our framework to
physical hardware implementations is an important challenge for future work. The RAM model
includes an infinite sequence of memory cells, each capable of holding an arbitrarily large natural
number. The model stores variables in registers and supports a set of basic operations for performing
arithmetic, logical, and memory operations. Programs also include instructions for conditional
jumps (if CONDITIONAL goto LINE) which allow simulation of the standard if, else, and while
expressions which we freely use.3 Additionally, many of our RAM programs are randomized and use

3We define condition matching in branching expressions to take 1 instruction.
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a RAND(n) instruction to sample a uniform random integer in {0, . . . , n}. We define the runtime of
a RAM program to be the number of basic instructions executed before halting, which is indicated
by a HALT command. That is, the space of runtime values T is equal to the natural numbers N.
The model includes a built-in variable input len that indicates the length |x| of the program’s
input x, as well as a built-in variable input ptr that indicates where in memory the input resides.
Additionally, every program writes their output to some location in memory indexed by the variable
output ptr and sets a variable output len to indicate the length of the output.

RAM programs should not make assumptions about the values loaded in memory locations out-
side the locations where the input resides, and are responsible for initializing any such memory that
they use. This specification aligns with the behavior observed in, for instance, C programs, wherein
it cannot be presumed that newly allocated memory through a malloc4 instruction is initialized
to zero. We remark that this specification introduces an element of non-determinism to our model
since a program may read and use uninitialized memory values. The space of environments E for
a RAM program is therefore the set of possible memory configurations as well as the initial values
stored by the built-in variables input ptr, input len, output ptr, and output len. Some envi-
ronments may not be relevant for a given input, e.g., the environment corresponding to all memory
locations being uninitialized is not possible for programs whose input lengths are greater than zero.
Similarly, compatible (x, env) pairs have the property that the memory locations of env indicated
by the variables input ptr and input len should contain the input x. For all such incompatible
pairs (x, env), P (x, env) is undefined and so we say that supp(P (x, env)) = ∅ in Definition 3 and
elsewhere. Finally, most of our RAM programs are pure and will not interact with uninitialized
memory, and therefore both the program’s output and running time will be independent of its
execution environment for all compatible (x, env) pairs.

Definition 10 (RAM Environment). The environment env of a RAM program is the infinite
sequence (v0, v1, . . . , ) such that M [i] = vi for all i along with the values stored by the built-in
variables input ptr, input len, output ptr, and output len.

Remark 11. A program’s environment includes the program’s input x by definition, and similarly,
a program’s output environment outenv(P (x, env)) includes the program’s output out(P (x, env)).

Word RAM. We will use a more realistic ω-bit Word RAM model for describing programs that
operate on bounded-length values. The word size ω corresponds to the bitlength of values held
in memory and variables, effectively capping the total addressable memory to 2ω. This limitation
arises because memory access, denoted by M [var], relies on the size of var, which cannot exceed
2ω−1. We fix the word size ω up front which therefore bounds the worst-case dataset size. Therefore
the model does not allow inputs to grow unboundedly. This constraint is principally driven by the
fact that computers in the real world are equipped with finite memory and a pre-determined word
size. Furthermore, allowing the word size to vary with the length of the input (e.g., it is standard
in the algorithms literature ω = Θ(log n) and allow n → ∞) introduces an additional side channel
within the computational framework. In particular, the output itself is given as a sequence of ω-bit
words, which reveals information about the input length. For these reasons, we treat the word size
as a separate public parameter which implies an upper bound on the input length.

4malloc is the standard C library function for dynamic memory allocation.
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2.2 Datasets, Distance Metrics, and Privacy Measures

Differential privacy (and timing privacy, Definition 3) is defined with respect to a dataset space X .
Typically, datasets consist of n ≥ 0 records drawn from a row-domain D, i.e., X =

⋃∞
n=0Dn. We

take elements of D as consisting of an individual’s data. As such, D often consists of d-dimensional
entries, for example, in tabular data where each individual has d attributes. Thus, in the RAM
model we take D = Nd and in the Word RAM model D = {0, . . . , 2ω − 1}d. Since input lengths are
bounded by 2ω in Word RAM, we only consider datasets of size at most some nmax < 2ω/d.

Following the OpenDP Programming Framework [GHV20], which is also the basis of Tumult
Core [BBD+22], our timing privacy and stability definitions work with arbitrary metrics on input
data(sets) and arbitrary measures of privacy. The dataset metrics are arbitrary, user-defined metrics
that are not required to satisfy the standard properties of non-negativity, symmetry, and triangle
inequality as in the standard mathematical definition of a metric. Two common choices for dataset
distance metrics are the Hamming distance and insert-delete distance.

Definition 12 (Hamming Distance). Let x, x′ ∈ D∗ be datasets. The Hamming distance denoted
dHam of x and x′ is

dHam(x, x
′) =

{
#{i : xi ̸= x′i} if |x| = |x′|
∞ otherwise

Definition 13 (Insert-Delete Distance). For x ∈ D∗, an insertion to x is an addition of an
element z to a location in x resulting in a new dataset x′ = [x1, . . . , xi, z, xi+1, . . . , xn]. Likewise, a
deletion from x is the removal of an element from some location within x, resulting in a new dataset
x′ = [x1, . . . , xi−1, xi+1, . . . , xn]. The insert-delete distance denoted dID of datasets x, x′ ∈ D∗ is
the minimum number of insertion and deletion operations needed to change x into x′.

We focus our attention on ordered distance metrics since the running time of a program often
depends on the ordering of its input data, e.g., if the algorithm starts by sorting its input.

We say that two datasets x and x′ are adjacent with respect to dataset distance metric dX if
dX (x, x

′) ≤ 1. When dX = dHam, this notion of adjacency captures “bounded differential privacy,”
where the dataset size n is known and public. When dX = dID, it captures for “unbounded
differential privacy,” where the dataset size itself may be unknown. We will also use what we call
“upper-bounded differential privacy,” where we assume a known and public upper bound nmax on
the dataset size, i.e., X = D≤nmax =

⋃nmax
n=0 Dn with metric dX = dID so that the exact dataset size

is unknown and needs to be protected with DP. This, for example, arises in the ω-bit Word RAM
model of computation where nmax ≤ 2ω/d for d-dimensional datasets. We note that these metrics
are appropriate for tabular datasets where each record corresponds to one individual’s data. Our
framework can also be instantiated for other data domains and metrics (e.g. user-level DP in a
dataset of events or graph DP with node privacy), but we leave designing algorithms for these
settings as future work.

A core feature of several DP systems and libraries is the ability to combine various component
functions into more complex differentially private mechanisms [McS09, HPN11, GHV20]. Analyzing
the stability of the various component functions is a useful method for understanding the privacy
implications of arbitrarily combining the functions [McS09]. The stability of a deterministic pro-
gram characterizes the relationship between its input and output distances. Executing the program
on “close” inputs will result in outputs that are also “close.” To define stability for randomized
programs, we’ll need the notion of couplings.
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Definition 14 (Coupling). A coupling of two random variables r and r′ taking values in sets R
and R′ respectively, is a joint random variable (r̃, r̃′) taking values in R×R′ such that r̃ has the
same marginal distribution as r and r̃′ has the same marginal distribution as r′.

Couplings allow us to extend the notion of stability to randomized programs by measuring
stability in terms of distributions rather than fixed outcomes. Specifically, the stability of a ran-
domized program can be interpreted as a worst-case analogue of the Wasserstein5 distance between
the program’s output distributions on close inputs.

We now generalize the notion of stability to programs.

Definition 15 (Output-Stable Programs). A program P : X × E → Y × E is (din 7→ dout)-output
stable with respect to input metric dX and output metric dY if ∀x, x′ ∈ X such that dX (x, x

′) ≤ din,
and all pairs of input-compatible env, env′ ∈ E, there exists a coupling (ỹ, ỹ′) of the random variables
(out(P (x, env)), out(P (x′, env′))) such that dY(ỹ, ỹ

′) ≤ dout with probability 1.

As an example, consider an output-pure program P : X × E → Y × E that takes an input
dataset x ∈ {0, 1}n and outputs the sum y =

∑n
i=1 xi. Such a program would be (1 7→ 1)-output

stable under the input distance metric dHam and output distance metric dN(y, y
′) = |y − y′|, since

changing a row’s value in the input can affect the output sum by at most 1. The program P can
therefore be made differentially private (Definition 21) by chaining it with another program that
adds Laplace noise with scale 1/ε to the output (see Section 6 for a formal definition of program
chaining and Lemma 54 for a RAM program that computes a DP sum).

We now introduce privacy measures which are arbitrary distances between probability distri-
butions.

Definition 16 (Generalized Privacy Measures). A privacy measure is a tuple (M,≤,M) where
(M,≤) is a partially-ordered set, and M is a mapping of two random variables X and X ′ over the
same measurable space to an element M(X,X ′) ∈ M satisfying:

1. (Post-processing). For every function g, M(g(X), g(X ′)) ≤ M(X,X ′)

2. ( Joint convexity). For any collection of random variables (Xi, X
′
i)i∈I and a random variable

I ∼ I, if M(Xi, X
′
i) ≤ c for all i, then M(XI , X

′
I) ≤ c.

We will frequently refer to a privacy measure only by the mapping M , where M and ≤ are
implicit. Some useful examples of privacy measures are pure and approximate DP which use the
max-divergence and smoothed max-divergence as their respective distance mappings.

Definition 17 (Max-Divergence). The max-divergence between two random variables Y and Z
taking values from the same domain is defined to be:

D∞(Y ||Z) = max
S⊆supp(Y )

[
ln

Pr[Y ∈ S]

Pr[Z ∈ S]

]
Lemma 18. A program P : X ×E → Y×E is ε-differentially private if and only if for every pair of
adjacent datasets x and x′, and every pair of input-compatible execution environments env, env′ ∈ E,
D∞(out(P (x, env))||out(P (x′, env′))) ≤ ε and D∞(out(P (x′, env′))||out(P (x, env))) ≤ ε.

5The Wasserstein distance between probability distributions Q and S on metric space (Y, dY) is defined as:

W1(Q,S) = inf
γ∈Γ

E(q,s)∼γdY(q, s)

where Γ is the set of all couplings of Q and S.
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Definition 19 (Smoothed Max-Divergence). The smoothed max-divergence between Y and Z is
defined to be:

Dδ
∞(Y ||Z) = max

S⊆supp(Y ):Pr[Y ∈S]≥δ

[
ln

Pr[Y ∈ S]− δ

Pr[Z ∈ S]

]
Lemma 20. A program P : X × E → Y × E is (ϵ, δ)-differentially private if and only if for
every pair of adjacent datasets x and x′, and every pair of input-compatible execution environments
env, env′ ∈ E,

Dδ
∞(out(P (x, env))||out(P (x′, env′))) ≤ ε

and
Dδ

∞(out(P (x′, env′))||out(P (x, env))) ≤ ε

Other examples of privacy measures that can be used in our framework are concentrated
DP [DR16, BS16], Rényi DP [Mir17], and f -DP [DRS22]. We give a general definition of dif-
ferential privacy for arbitrary input metrics and privacy measures.

Definition 21. A program P : X ×E → Y ×E is (din 7→ dout)-differentially private with respect to
input metric dX and privacy measure M if for every pair of datasets x, x′ ∈ X satisfying dX (x, x

′) ≤
din and every pair of input-compatible execution environments env, env′ ∈ E, out(P (x′, env′)) ≤
dout.

Definition 2 is a special case of Definition 21 by replacing setting the privacy measure M to be
the smoothed max-divergence (Definition 19), dout = (ε, δ), din = 1, and dX is a dataset distance
metric such as dID or dHam.

Finally, we remark that (ε, δ)-differentially private algorithms have the following properties.

Lemma 22 (Post-processing [DMNS06]). Let M : X → Y be an (ε, δ)-differentially private function
and f : Y → Z be a (possibly) randomized function. Then f ◦ M : X → Z is (ε, δ)-differentially
private.

Lemma 23 (Composition [DKM+06]). Let M1 : X → Y1 be a (ε1, δ1)-differentially-private function
and M2 : X → Y2 be (ε2, δ2)-differentially-private function. Then (M1 ⊗M2)(x) = (M1(x),M2(x))
is a (ε1 + ε2, δ1 + δ2)-differentially-private function.

3 Timing-Stable Programs

In this section, we introduce new stability definitions for program runtime. Analogous to how
global sensitivity determines an amount of noise that suffices for achieving differential privacy in
randomized functions, we present a similar notion that determines an added runtime delay that
suffices for ensuring timing privacy in randomized programs.

3.1 Timing Stability

Definition 24 (Timing Stability). Let P : X ×E → Y ×E be a (possibly randomized) program and
dX a metric on X . Then we say that P is (din 7→ tout)-timing-stable with respect to dX if ∀x, x′ ∈ X
satisfying dX (x, x

′) ≤ din, ∀env, env′ ∈ E, ∃ a coupling (r̃, r̃′) of TP (x, env) and TP (x
′, env′) such

that |r̃ − r̃′| ≤ tout with probability 1.
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Program 1
A RAM program for randomized response.

Input: A bit x ∈ {0, 1} at memory location
M [input ptr]
Output: A uniform random bit

1: x = M [input ptr];
2: output len = 1;
3: output ptr = input ptr;
4: b = RAND(1); {flip coin}
5: if b == 1 then
6: M [output ptr] = 1− x; {flip bit}
7: HALT;

(1) read input x
(2) set output length
(3) set output ptr
(4) sample a uniform bit b
(5) conditional check on b

(6) Halt

b = 0

(6) Write 1− x to output
(7) Halt

b = 1

Figure 1: A Boolean randomized response RAM program and its corresponding execution tree.
The program executes 1 additional instruction when it outputs 1− x versus x.

Programs that exhibit timing stability ensure that changes in their inputs only cause bounded
changes in their runtime distributions. However, this property is less useful for addressing privacy
concerns when the program’s output is also made available. For instance, consider the execution tree
of a program that returns a randomized response to a Boolean input, as shown in Figure 1. Each
leaf in the tree signifies an output, with the depth of the leaf indicating its runtime. An analysis
of the tree reveals that the runtime does not depend on the input bit x. Programs with such
input-independent runtime are categorized as 0-timing-stable (see Appendix, Lemma 70 for proof).
Furthermore, the program outputs an independent Bernoulli random variable with p = 1/2 and
therefore achieves 0-DP. This might suggest that the program cannot leak any information about
the input. However, the runtime exposes the program’s internal randomness, indicating whether
the output is x or 1 − x. Thus, the input bit can be precisely determined by the combination
of the program’s output and runtime, despite the program being both 0-timing stable and 0-DP.
This demonstrates the need for a refined definition of timing stability that considers the program’s
output, which we provide in the next section.

3.2 Output-Conditional Timing Stability

Definition 25 (Output-Conditional Timing Stability). Let P : X × E → Y × E be (possibly
randomized) program and dX a metric on X . Then we say that P is (din 7→ tout)-OC timing-
stable with respect to dX if ∀x, x′ satisfying dX (x, x

′) ≤ din, ∀ environments env, env′ ∈ E, and
∀y ∈ supp(P (x, env)) ∩ supp(P (x′, env′)), there exists a coupling (r̃, r̃′) of the conditional runtime
random variables TP (x, env)|out(P (x,env))=y and TP (x

′, env′)|out(P (x′,env′))=y such that |r̃ − r̃′| ≤ tout
with probability 1.

Output-conditional timing stability imposes stricter requirements than basic timing stabil-
ity when the support sets of out(P (x, env)) and out(P (x′, env′)) are similar. For any output
y that has a non-zero probability of being produced by P for inputs x and x′, as is implied
if P ’s output is differentially private (e.g., for both pure and Rényi DP, the supports must be
identical), output-conditional timing stability ensures that the conditional runtime distributions
TP (x, env)|out(P (x,env))=y and TP (x

′, env′)|out(P (x′,env′))=y are close.
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We now analyze the program depicted in Figure 1 through the perspective of output-conditional
timing stability.

Lemma 26. The Boolean randomized response program P shown in Figure 1 is (1 7→ 1)-OC-timing
stable with respect to the Hamming distance metric dHam.

Proof. TP (0, env0) is always 6 conditioned on out(P (0, env0)) = 0, and TP (1, env1) is always 7
conditioned on out(P (1, env1)) = 0. Thus a point coupling of the conditional random variables
TP (0, env)|out(P (0,env0))=0 and TP (1, env1)|out(P (1,env1))=0) as (r̃, r̃

′) = (6, 7) satisfies Pr[|r̃−r̃′| ≤ 1] =
1. Similarly, we can take the point coupling of (TP (0, env0)|out(P (0,env0))=1, TP (1, env1)|out(P (1,env1))=1)
as (r̃, r̃′) = (7, 6) which also satisfies Pr[|r̃ − r̃′| ≤ 1] = 1.

Constant-time programs are (din 7→ 0)-OC timing stable for all din (Lemma 73, proof in Ap-
pendix). Additionally, any program that has deterministic output and is (din 7→ tout)-timing-stable
is also (din 7→ tout)-OC timing stable (Lemma 72, proof in Appendix).

3.3 Jointly-Output/Timing Stable Programs

We consider another natural definition of runtime stability, called joint output/timing stability,
which considers the joint distribution of a program’s output and its runtime. This notion becomes
particularly useful when chaining programs together to create more complex functionality (§6).
In particular, joint output/timing stability ensures that close inputs simultaneously produce close
outputs and runtimes. This property becomes useful when reasoning about the output-conditional
timing stability of programs whose inputs come from the output of another program (§6). In par-
ticular, an output-conditional timing-stable program P2, bounds the change in runtime conditioned
on a given output value for all din-close inputs. However, when constructing a chained program
P2 ◦ P1, where P2 receives its input from the output of P1, it’s necessary to jointly bound the
output and runtime stability of P1 to guarantee output-conditional timing stability for the chained
program P2 ◦ P1.

Definition 27 (Joint Output/Timing Stability). Let P : X×E → Y×E be a program and dX a met-
ric on X . Then we say that P is (din 7→ {dout, tout})-jointly output/timing stable with respect to dis-
tance metrics dX and dY , if ∀x, x′ ∈ X satisfying dX (x, x

′) ≤ din, and all pairs of input-compatible
execution environments env, env′ ∈ E, ∃ a coupling ((ũ, ṽ), (ũ′, ṽ′)) of (out(P (x, env)), TP (x, env))
and (out(P (x′, env′)), TP (x

′, env′)) such that dY(ũ, ũ
′) ≤ dout and |ṽ − ṽ′| ≤ tout with probability 1.

For programs with deterministic6 outputs, if the program simultaneously satisfies (d1 7→ d2)-
output stability and (d1 7→ t1)-timing stability, then the program will also satisfy (d1 7→ {d2, t1})-
joint output/timing stability.

Lemma 28. If P : X × E → Y × E is a deterministic (in its output) program that is (d1 7→ d2)
output stable and (d1 7→ t1)-timing stable, then P is (d1 7→ {d2, t1})-jointly output/timing stable.

Proof. Let y = out(P (x, env)) and y′ = out(P (x′, env′)) and choose the coupling to be ((y, r), (y′, r′))
where (r, r′) is sampled from the coupling (r̃, r̃′) associated with the timing stability of P . Then
dY(y, y

′) ≤ d2 by output stability and |r − r′| ≤ t1 by timing stability. Since P is determinis-
tic, it follows that (y, r) and (y′, r′) are identically distributed to (out(P (x, env)), TP (x, env)) and
(out(P (x′, env′)), TP (x

′, env′)) respectively and the claim is satisfied.

6A program P : X × E → Y × E is deterministic in its output if for all x ∈ X , ∃y ∈ Y, such that for all
input-compatible env ∈ E , Pr[out(P (x, env)) = y] = 1. Therefore, deterministic programs are also output-pure
programs.
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Program 2 Sum Program

Input: A dataset x ∈ {0, . . . ,∆}n located at M [input ptr], . . . ,M [input ptr+ input len− 1].
We require that ∆ < 2ω and n ≤ 2ω − 1 in the ω-bit Word RAM model.

Output:
∑

M [i] for i = input ptr, . . . , (input ptr+ input len− 1). The program outputs
min{

∑
M [i], 2ω − 1} in the Word RAM model.

1: output len = 1;
2: idx = input ptr;
3: n = input ptr+ input len;
4: sum = 0;
5: while idx < n do
6: sum = M [idx] + sum;
7: idx = idx+ 1;
8: output ptr = 0;
9: M [output ptr] = sum;

10: HALT;

A useful example of a jointly output/timing stable RAM program is one that sums over the
dataset.

Lemma 29. The Sum Word RAM program P : X ×E → N×E (Program 2) is (1 7→ {∆, 3})-jointly
output/timing stable under the insert-delete input distance metric dID and the output distance metric
dN defined as dN(y, y

′) = |y − y′|.

Proof. Inserting or deleting an input record changes the runtime by one loop iteration, which
consists of 3 instructions. Therefore the program is (1 7→ 3)-timing stable under the input distance
metric dID. Additionally, the program is (1 7→ ∆)-output stable under dID since adding or removing
an input record changes the sum by at most ∆ (the maximum value of an input record). Since
the program is deterministic in its output, the program satisfies (1 7→ {∆, 3})-joint output/timing
stability (Lemma 28). The proof follows similarly if P is instead a RAM program.

We now show that the class of timing-stable programs is restricted to programs that have a
worst-case runtime that is at most linear in their input length. This implies that certain programs,
e.g., those that perform superlinear-time sorting, cannot achieve timing stability on inputs of un-
bounded length. It is an interesting challenge for future work to see if non-trivial timing-private
programs can be designed that incorporate such operations.

Lemma 30 (Timing-stable programs have O(n) runtime). Let X = D∗ for a row-domain D. A
program P : X × E → Y × E on inputs of unbounded length that is (din 7→ tout)-timing-stable with
respect to distance metric dX (x, x

′) = ||x| − |x′|| has linear worst-case runtime. Specifically, for all
x and all t ∈ T , we have

Pr[TP (x) ≤ |x| · tout + t0] ≥ Pr[TP (λ) ≤ t0]

where λ is the empty dataset of size 0.

Note that for every p < 1, there exists a t0 such that Pr[TP (λ) ≤ t0] > p. Therefore the above
lemma says that, with high probability, the runtime is at most linear.
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Proof. Consider a sequence of datasets (x0, x1, . . . , xn) such that dX (xi, xi+1) ≤ din and x0 = λ.
Then for all xi, xi+1, and all pairs of input-compatible execution environments envi, envi+1 ∈ E ,
there exists a coupling (r̃i, r̃i+1) of TP (xi, envi) and TP (xi+1, envi+1) such that |r̃i − r̃i+1| ≤ tout
by the (din 7→ tout)-timing-stability of P . Using the Gluing Lemma for couplings [V+09], we can
construct a big coupling (r̃0, r̃1, . . . , r̃n) such that Pr[|r̃i − r̃i+1| ≤ tout] = 1 for all i. Then, by
an application of the triangle inequality, for all pairs of execution environments env0, envn ∈ E ,
there exists a coupling (r̃0, r̃n) of TP (x0, env0) and TP (xn, envn) such that |r̃0 − r̃n| ≤ n · tout with
probability 1. Therefore

Pr[TP (xn, envn) ≤ |xn| · tout + t0]

= Pr[TP (xn, envn) ≤ n · tout + t0]

≥ Pr[r̃0 ≤ t0]

= Pr[TP (λ, env0) ≤ t0]

The result also holds for jointly output/timing-stable programs since jointly output/timing-
stable programs are also timing-stable programs (Lemma 74). However, a similar statement for
OC-timing-stable programs does not hold, since it does not guarantee much about distributions of
the runtimes on adjacent inputs when the output distributions on those inputs are very different.
(In an extreme case, when the output distributions have disjoint supports, OC-timing stability says
nothing).

4 Timing-Private Programs

In this section, we introduce a notion of privacy with respect to timing attacks. Intuitively, we
require that timing-private programs should not leak much more information about their input
than what is already revealed by their output distributions.

4.1 Timing Privacy

We generalize Definition 3 to work with arbitrary dataset distance metrics and privacy measures.

Definition 31 (Timing Privacy). Let P : X ×E → Y×E be a program, dX a metric on X , and M
a distance measure between probability distributions. Then we say that P is (din 7→ dout)-timing-
private with respect to dX and M if for all x, x′ satisfying dX (x, x

′) ≤ din, all pairs of environments
env, env′ ∈ E, and all y ∈ supp(out(P (x, env))) ∩ supp(out(P (x′, env′)))

M(TP (x, env)|out(P (x,env))=y, TP (x
′, env′)|out(P (x′,env′))=y) ≤ dout

We also provide an alternative and equivalent simulation-based definition of timing privacy.

Definition 32 (Sim-Timing Privacy). Let P : X ×E → Y×E be a program, dX a metric on X , and
M a distance measure between probability distributions. Then we say that P is (din 7→ dout)-timing
private with respect to dX and M if ∀x, x′ satisfying dX (x, x′) ≤ din, all environments env, env′ ∈ E,
∃ a simulator S : {(x, env), (x′, env′)} × Y → T such that:

1. ∀y ∈ supp(out(P (x, env))), we have S(x, env, y) ≡ TP (x, env)|out(P (x,env))=y

2. ∀y ∈ supp(out(P (x′, env′))), we have S(x′, env′, y) ≡ TP (x
′, env′)|out(P (x′,env′))=y
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3. ∀y ∈ Y,M(S(x, env, y), S(x′, env′, y)) ≤ dout

where Y ≡ Z denotes that the random variables Y and Z are identically distributed.

The alternative definition is equivalent to Definition 31, but it lends itself more naturally to a
computational analogue of timing privacy when we add the assumption that S runs in polynomial
time. Requirements (1) and (2) that S is identically distributed to the conditional runtime random
variable gets relaxed to computational indistinguishability, and requirement (3) gets relaxed to
computational differential privacy [MPRV09]. Importantly, such a definition is meaningful even if
supp(out(P (x, env))) ∩ supp(out(P (x′, env′))) = ∅, in contrast to Definition 31. The supports on
adjacent inputs may be disjoint, but a polynomial-time simulator S will not be able to detect this.

Lemma 33. Timing privacy (Definition 31) and Sim-Timing Privacy (Definition 32) are equiva-
lent.

Proof. We first show that Definition 31 =⇒ Definition 32. On every pair of inputs x, x′ satisfying
dX (x, x

′) ≤ din, all pairs of input-compatible environments env, env′ ∈ E , and every output y ∈
supp(Y ) ∩ supp(Y ′), where Y = out(P (x, env)) and Y ′ = out(P (x′, env′)), we have that

M(TP (x, env)|Y=y, TP (x
′, env′)|Y ′=y) ≤ dout

by timing privacy. Thus, let

S(x, env, y) =


t ∼ TP (x, env)|Y=y if y ∈ supp(Y )

t ∼ TP (x
′, env′)|Y ′=y if y ∈ supp(Y ′) \ supp(Y )

0 otherwise

defined similarly for S(x′, env′, y). We now make the following claims.

(1) ∀y ∈ supp(Y )

S(x, env, y) ≡ TP (x, env)|Y=y

(2) ∀y ∈ supp(Y ′)

S(x′, env′, y) ≡ TP (x
′, env′)|Y ′=y

(3) ∀y ∈ Y,M(S(x, env, y), S(x′, env′, y)) ≤ dout

Claims (1) and (2) are trivially true by the definition of S. The proof of claim (3) follows from
the fact that for all y ̸∈ supp(Y ) ∪ supp(Y ′), the simulator outputs 0 and therefore S(x, env, y) ≡
S(x′, env′, y). Similarly, for all y ∈ supp(Y )∩ supp(Y ′), the simulator outputs either t ∼ TP (x, env)
or t ∼ TP (x

′, env′) according to its input. For all such y, M(TP (x, env), TP (x
′, env′)) ≤ dout by tim-

ing privacy. The only remaining case is when S(x, env, y) is given a value y ∈ supp(Y ′) \ supp(Y ).
In this scenario, S outputs t ∼ TP (x

′, env′) which will be distributed identically to S(x′, env′, y) by
definition (and S(x′, env′, y) behaves similarly for y ∈ supp(Y )\supp(Y ′)). Therefore S(x, env, y) ≡
S(x′, env′, y) for all such y and the claim is proven.

Now we show that Definition 32 =⇒ Definition 31. For every pair of datasets x, x′ satisfying
dX (x, x

′) ≤ din, and for all input-compatible environments env, env′ ∈ E , there exists a simulator
S : {(x, env), (x′, env′)} × Y → T such that
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1. ∀y ∈ supp(Y ), S(x, env, y) ≡ TP (x, env)|Y=y

2. ∀y ∈ supp(Y ′), S(x′, env′, y) ≡ TP (x
′, env′)|Y ′=y

3. ∀y ∈ Y,M(S(x, env, y), S(x′, env′, y)) ≤ dout

by sim-timing privacy. It follows that P is (din 7→ tout)-timing private since for all y ∈ supp(Y ),
S(x, env, y) is identically distributed to the conditional runtime random variable TP (x, env)|Y=y

(and similarly for S(x′, env′, y) ≡ TP (x
′, env′)|Y ′=y for all y ∈ supp(Y ′)). Additionally, since

∀y ∈ Y,M(S(x, env, y), S(x′, env′, y)) ≤ dout

it follows that

M(TP (x, env)|Y=y, TP (x
′, env′)|Y ′=y) ≤ dout

which is what we wanted to show.

4.2 Joint Output/Timing Privacy

We now give a more general notion of joint output/timing privacy for arbitrary dataset met-
rics and privacy measures, generalizing the approximate DP version in Definition 4, which is
from [BDDNT23].

Definition 34 (Joint Output/Timing Privacy). Let P : X ×E → Y ×E be a (possibly) randomized
program. Then we say that P is (din 7→ dout)-jointly output/timing-private with respect to distance
metric dX and privacy measure M , if for all adjacent x, x′ ∈ X satisfying dX (x, x

′) ≤ din, and all
pairs of input-compatible execution environments env, env′ ∈ E

M(out(P (x, env)), TP (x, env)), (out(P (x′, env′)), TP (x
′, env′))) ≤ dout

In contrast to timing privacy (Definition 31), joint output/timing privacy applies the standard
DP definition to the joint random variable containing the program’s output and runtime. In
the case of pure-DP, this is equivalent to the program being both Θ(ε)-differentially private and
Θ(ε)-timing private (Lemma 35). However, we remark that the result does not extend to (ε, δ)-
timing privacy. For example, a (ε, δ)-jointly output/timing-private program may, with probability
δ, output a special constant y∗ and completely encode the input in its running time. On the other
hand, such a program would not satisfy timing privacy, which would require that the runtime be
DP even conditioned on this rare, special output y∗.

Lemma 35. If a program P : X × E → Y × E is ε-jointly output/timing private then it is also
ε-DP and 2ε-timing-private.

Proof. Let Y = out(P (x, env)) and Y ′ = out(P (x′, env′)). We start with the fact that

Pr[(Y, TP (x, env)) ∈ {y} × S2]

= Pr[TP (x, env) ∈ S2|Y = y] · Pr[Y = y]

≤ eε · Pr[TP (x
′, env′) ∈ S2|Y ′ = y] · Pr[Y ′ = y]

by joint output/timing privacy. Note that if

Pr[(Y, TP (x, env)) ∈ {y} × S2] ≤ eε · Pr[(Y ′, TP (x
′, env′)) ∈ {y} × S2]
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then

Pr[Y = y] ≤ eε · Pr[Y ′ = y]

by post-processing (Lemma 22). Thus,

Pr[TP (x, env) ∈ S2|Y = y] =
Pr[(Y, TP (x, env)) ∈ {y} × S2]

Pr[Y = y]

≤ eε · Pr[(Y ′, TP (x
′, env′)) ∈ {y} × S2]

e−ε · Pr[Y ′ = y]

= e2ε · Pr[TP (x
′, env′) ∈ S2|Y ′ ∈ S1]

Lemma 36. If P : X ×E → Y ×E is (ε1, δ1)-differentially private and (ε2, δ2)-timing-private, then
P achieves (ε1 + ε2, δ1 + δ2)-joint output/timing privacy.

Proof. The proof follows as an application of the composition theorem (Lemma 23). Since the
program is (ε1, δ1)-DP, we have that for any pair of din-close inputs x, x′, all input-compatible
env, env′ ∈ E , and for all S ⊆ Y

Pr[Y ∈ S] ≤ eε1 · Pr[Y ′ ∈ S] + δ1

where Y = out(P (x, env)) and Y ′ = out(P (x′, env′)).
By timing privacy, for any pair of din-close inputs x, x′, and all input-compatible env, env′ ∈ E ,

there exists a simulator S satisfying for all y ∈ supp(Y )

S(x, env, y) ≡ TP (x, env)|Y=y

and similarly for and all y ∈ supp(Y ′),

S(x′, env′, y) ≡ TP (x
′, env′)|Y ′=y

Finally, for all y ∈ Y, and all Q ⊆ T we have that

Pr[S(x, env, y) ∈ Q] ≤ eε2 · Pr[S(x′, env′, y) ∈ Q] + δ2

Thus, the random variable (Y, S(x, env, Y )) ≡ (Y, TP (x, env)|Y ) is equivalent to the composition
of an (ε1, δ1)-DP and (ε2, δ2)-DP mechanism.

In contrast to timing privacy (Definition 31), joint output/timing privacy applies the standard
DP definition to the joint random variable containing the program’s output and runtime. In the
case of pure-DP, this is equivalent to the program being both Θ(ε)-differentially private and Θ(ε)-
timing private (see Appendix, Lemma 35). However, we remark that the result does not extend
to (ε, δ)-timing privacy. For example, a (ε, δ)-jointly output/timing-private program may, with
probability δ, output a special constant y∗ and completely encode the input in its running time.
On the other hand, such a program would not satisfy timing privacy, which would require that the
runtime be DP even conditioned on this rare, special output y∗.
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5 Timing-Private Delay Programs

We now discuss a core component for building timing private programs in our framework. We
introduce timing-private delay programs which operate similarly to additive noise mechanisms for
output privacy. Such programs are used to delay the execution of a program before releasing its
output. When applied to timing-stable programs, the addition of such delay can transform these
programs into timing-private ones.

5.1 Timing-Private Delays

Definition 37 (Timing-Private Delays). A distribution Φ on a time domain T ⊆ R≥0 satisfying
Pr[Φ < 0] = 0 is a (tin → dout)-timing-private delay distribution under privacy measure M if
∀t ∈ T , t ≤ tin, if T ∼ Φ, then

M(T, T + t) ≤ dout

Remark 38. The requirement that Φ has zero probability mass on values less than 0 enforces the
physical reality that time cannot be subtracted.

We now give an example of a distribution Φ that is a (tin → (ε, δ))-timing-private delay distribution
under the smoothed max-divergence privacy measure Dδ

∞ (Definition 19).
Recall the Discrete Laplace distribution with shift µ and scale s has a probability density

function:

f(x|µ, s) = e1/s − 1

e1/s + 1
· e−|x−µ|/s

and CDF:

F (x|µ, s) =

{
e1/s

e1/s+1
· e−(µ−x)/s, if x ≤ µ

1− 1
e1/s+1

· e−(x−µ)/s, otherwise

Lemma 39. For µ ≥ tin, B ≥ 2µ, s = tin/ε with tin, ε > 0, the censored Discrete Laplace
distribution Φ = min{max{T, 0}, B} + c, for a constant c where T is sampled from a Discrete
Laplace distribution with parameters µ and s, is a (tin → (ε, δ))-timing private delay distribution
under the smoothed max-divergence privacy measure Dδ

∞ with δ = 2 · e−ε(µ−tin)/tin.

Proof. We take t1 ≤ tin and let ϕ ∼ Φ. For all t1 < t ≤ B + c, we have that:

Pr[ϕ+ t1 = t]

Pr[ϕ = t]
= e

ε|t−t1−µ|−|t−µ|
tin ≤ e

ε|t1|
tin ≤ eε

Additionally, for all t < c it follows that Pr[ϕ + t1 = t] = Pr[ϕ = t] = 0. Similarly, for all
t > B + c + t1 it follows that Pr[ϕ + t1 = t] = Pr[ϕ = t] = 0. However, for all c ≤ t < t1 we have
that Pr[ϕ + t1 = t] = 0 and Pr[ϕ = t] > 0 and therefore the multiplicative distance between the
distributions is unbounded on this interval. This event only happens when ϕ ≤ t1 yielding

δ = F (t1|µ, s) ≤ F (tin|µ, s) =
eε/tin

eε/tin + 1
· e−ε(µ−tin)/tin

≤ e−ε(µ−tin)/tin
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by the CDF of the Discrete Laplace distribution. Similarly, for B + c < t, we have that
Pr[ϕ+ t1 = t] > 0 and Pr[ϕ = t] = 0. This event only happens when ϕ > B − t1:

Pr[ϕ > B − t1] ≤ 1− F (B − tin|µ, s)

=
1

eε/tin + 1
·
(
e−ε(B−tin−µ)/tin

)
≤ e−ε(µ−tin)/tin

It follows that Dδ
∞(ϕ + t1||ϕ) ≤ ε and Dδ

∞(ϕ||ϕ + t1) ≤ ε for δ = 2e−ε(µ−tin)/tin . Finally, we
note that Pr[ϕ < 0] = 0.

Definition 40 (Timing-Private Delay Program). A (tin 7→ dout)-timing-private delay program
P : X × E → X × E with respect to time domain T ⊆ R≥0 and probability distance measure M
implements the following functionality:

1. Identity function. For all x ∈ X , and all env ∈ E

Pr[out(P (x, env)) = x] = 1

2. Timing-private delay distributed runtime. For all x ∈ X , all env ∈ E, TP (x, env) is
distributed according to a (tin 7→ dout)-timing-private delay distribution on T .

Lemma 41. Let P : X × E → X × E be a timing-private delay program. Then P is output-pure.

Proof. Since P implements the identity function by definition, for all x ∈ X , the random variables
out(P (x, env)) and out(P (x, env′)) are identically distributed for all pairs of input-compatible
execution environments env, env′ ∈ E .

Program 3 is an example of a timing-private delay program in the RAM and Word RAM models.
The program has the property that it runs in time identically distributed to a censored Discrete
Laplace distribution. Thus, we have:

Lemma 42. The timing-private delay Word RAM program P : X × E → X × E (Program 3) with
shift = µ and scale parameter s = 1/ ln(b/a) satisfying ln(b/a) = ε/tin is a (tin 7→ (ε, δ))-timing-
private delay program on time domain N for δ = 2 · e−ε(µ−tin)/tin.

Proof. We will show that Program 3 runs in time distributed exactly to min{max{0, T}, B} + c
where c = 16 + 7 · bound and T is the Discrete Laplace distribution with parameter µ = shift,
s = tin/ε = 1/ ln(b/a), and B ≥ 2 · µ. The claim then follows from Lemma 39 and the fact that
the program implements the identity function.

The program implements the following functionality. First, the program samples a uniform
random bit that is assigned to the variable sign (line 6). Next, it flips a biased coin with probability
p = (b − a)/(b + a) (lines 7-10) and sets sample = 0 if the trial is successful (line 11). Lines 1-14
take exactly 12 instructions to execute independent of the branching condition due to the NOP

instructions. The program then loops bound times, where each loop takes exactly 7 instructions to
execute. During this loop, if set = 0 (which happens conditioned on sample ̸= 0), the program
sets sample to be a value drawn from a censored Geometric distribution with p = b−a

b
and a bound

of t = bound, where the censored Geometric distribution has probability mass:
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CensGeo(x|p, t) =


p · (1− p)x−1 if x < t

(1− p)t−1 x = t

0 otherwise

for x ≥ 1. The distribution is censored since the program exits the loop when count = bound

(line 15) regardless of whether or not a success has been observed. In this case, the program sets
sample = bound (lines 26-29), which always executes in exactly 2 instructions.

The program then delays execution by the value sleep = shift± sample (lines 30 - 33) where
sample is subtracted or added to shift depending on the value of sign. Lines 30-33 always
execute exactly 2 instructions. Therefore, up to the final NOP(sleep) instruction (line 34), the
program executes in exactly c = 12+7 · bound+2+2 = 16+7 · bound instructions. What remains
to be shown is that sleep is distributed exactly to Φ = min{max{0, T}, B}.

We start with the case that sleep = µ. Let Z be the random variable associated with the coin
flip at lines 7-10. Then Pr[Z = 1] = b−a

b+a
. Observe that for the PMF f of the Discrete Laplace

distribution:

f(x = shift|µ = shift, s = 1/ ln(b/a)) =
eln(b/a) − 1

eln(b/a) + 1

=
b− a

b+ a

= Pr[Z = 1]

and therefore the program delays for shift = µ instructions with probability mass according
to DiscreteLaplace(µ, s).

We now consider the case where sleep ̸= µ, i.e., Z = 0. In this case, the program samples
another value from a censored Geometric distribution with p = b−a

b
(lines 15-29). Thus, for all

values 0 < y < B, y ̸= µ

Pr[sleep = y] =
1

2
· (1− Pr[Z = 1]) · Pr[CensGeo(p, t) = |y − µ|]

=
1

2
·
(
1− b− a

b+ a

)
·
(a
b

)|y−µ|−1 · (1− a

b
)

=
1

2
· (1− e1/s − 1

e1/s + 1
) · (e−1/s)(|y−µ|−1) · (1− e−1/s)

=
1

2
· (e

1/s + 1− e1/s + 1

e1/s + 1
) · (e−1/s)(|y−µ|−1) · (1− e−1/s)

=
1

e1/s + 1
· (e−1/s)(|y−µ|−1) · (1− e−1/s)

=
e(−(|y−µ|)+1)/s − e−(|y−µ|)/s

e1/s + 1

=
e1/s − 1

e1/s + 1
· e−|y−µ|/s

which equals the PMF of the Discrete Laplace distribution for all 0 < y < B, y ̸= µ.
We now consider the edge cases. We show that Pr[sleep = 0] = F (0|µ, s) where F is the CDF

of the Discrete Laplace distribution with shift µ and with scale parameter s = 1/ ln(b/a) satisfying
ln(b/a) = ε/tin:
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Pr[sleep = 0] =
1

2
· (1− Pr[Z = 1]) · Pr[CensGeo(p, t) ≥ µ− 1]

=
1

2
·
(
1− b− a

b+ a

)
·
(a
b

)(µ−1)

=
1

2
· (1− eε/tin − 1

eε/tin + 1
) · (e−ε/tin)(µ−1)

=
1

eε/tin + 1
· (e−ε·(µ−1)/tin)

=
eε/tin

eε/tin + 1
· (e−ε·µ/tin)

= F (0|µ = µ, s = ε/tin)

where the leading 1
2 comes from the probability that the sign is negative.

Finally, we show that Pr[sleep = B] = 1− F (B − 1|µ, s) where F is the CDF of the Discrete
Laplace distribution with shift µ and scale parameter s = 1/ ln(b/a) satisfying ln(b/a) = ε/tin and
B = µ+ bound ≥ 2µ:

Pr[sleep = B] =
1

2
· (1− Pr[Z = 1]) · Pr[CensGeo(p, t) = B]

=
1

2
·
(
1− b− a

b+ a

)
·
(a
b

)B−1

=
1

2
· (1− eε/tin − 1

eε/tin + 1
) · (e−ε/tin)B−1

=
1

eε/tin + 1
· (e−ε·(B−1)/tin)

=
1

eε/tin + 1
· (e−ε·(B−1)/tin)

= 1− F (B − 1|µ = µ, s = ε/tin)

Thus, the program has runtime that is distributed exactly to Φ = min{max{0, T}, B} + c for
c = 16 + 7 · bound. The lemma follows from Lemma 39.

Lemma 43. The timing-private delay Word RAM program P : X × E → X × E (Program 3) is
both output-pure and timing-pure.

Proof. The proof follows from the fact that the program never interacts with uninitialized memory.
Therefore for all y ∈ N, the program’s output and runtime is identically distributed on all pairs of
input-compatible execution environments env, env′ ∈ E .
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Program 3 Timing-Private Delay Program

Input: An input x located in memory M [input ptr], . . . ,M [input ptr+ input len− 1].

Output: The input x, with runtime min{max{T, 0}, shift+ bound}+ c, where T is drawn from
a Discrete Laplace distribution with parameters µ = shift and s = 1/ ln(b/a) where shift, a,
b > a, and bound ≥ shift are hardcoded constants, and c = 16 + 7 · bound. For the Word RAM
version of the program, we require s, (µ+ bound) and (a+ b) to be less than 2ω.

1: output ptr = input ptr;
2: output len = input len; {compute the identity function}
3: count = 0;
4: set = 0;
5: sample = 0;
6: sign = RAND(1); {add or subtract from µ}
7: zeroprobA = b− a; {num. of prob. to sample a zero}
8: zeroprobB = b+ a; {denom. of prob. to sample a zero}
9: idx = RAND(zeroprobB− 1);

10: if idx < zeroprobA then
11: sample = 0; {With probability b−a

b+a
add µ delay}

12: set = 1;
13: else
14: NOP(2);

15: while count < bound do
16: count = count+ 1;
17: if set == 0 then
18: idx = RAND(b− 1);
19: if idx < b− a then
20: sample = count; {with probability b−a

b
add µ± count delay}

21: set = 1;
22: else
23: NOP(2);
24: else
25: NOP(4);

26: if set == 0 then
27: sample = bound;
28: else
29: NOP(1);

30: if sign == 0 then
31: sleep = shift− sample;
32: else
33: sleep = shift+ sample;

34: NOP(sleep); {Delay for sampled amount of time}
35: HALT;
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6 Chaining and Composition

Software libraries such as OpenDP and Tumult Core [GHV20, BBD+22, SVM+] support chaining
together multiple algorithms in a modular fashion to create more complex mechanisms with provable
stability and privacy guarantees. Motivated by these libraries, we extend our framework to support
similar functionality. Specifically, we discuss properties of timing-stable programs that are combined
to create more complex functionality such as chaining and composition.

6.1 Chaining Timing-Stable Programs

While timing stability bounds the differences in program execution time for a single program P ,
we are often interested in chaining together multiple programs, e.g., executing program P2 on
the output of program P1. For such chaining operations, we use the notation (P2 ◦ P1)(x, env1)
interchangeably with P2(P1(x, env1), env2) for some execution environment env2 (see below).

Definition 44 (Chaining-compatible Programs). We say that programs P1 : X × E → Y × E and
P2 : Y × E → Z × E are chaining-compatible if there exists a program (P2 ◦ P1) and a constant c
such that for inputs x ∈ X and environments env1 ∈ E, there exists a (possibly random) env2 ∈ E
such that we have:

out((P2 ◦ P1)(x, env1)) = out(P2(out(P1(x, env1)), env2))

and
T(P2◦P1)

(x, env1) = TP1
(x, env1) + TP2

(out(P1(x, env1)), env2) + c.

Here we allow the random variable env2 to be arbitrarily correlated with x, as well as the output
and runtime of P1(x, env1), but should be independent of the coin tosses of P2.

Remark 45. If the construction of P2◦P1 in the computational model does not modify the environ-
ment when chaining programs together, then env2 equals outenv(P1(x, env1)). However, real-world
systems often modify the environment before executing sequential programs, e.g., setting up CPU
registers.

RAM and Word RAM programs can easily be made chaining-compatible.

Lemma 46. Word RAM programs P1 : X × E → Y × E and P2 : Y × E → Z × E are chaining
compatible.

Proof. Observe that, after P1’s execution, the program’s output y = out(P1(x, env1)) is located in
memory locations

M [output ptr], . . . ,M [output len− 1]

To create the chained program P2 ◦ P1, we replace the HALT instruction at the end of P1 with
the instructions input ptr = output ptr and input len = output len. We then add all of the
code from P2 and adjust the necessary line numbers in any GOTO statements in the relevant P2

code. The resulting program is an execution of P2 on input y in environment env2 that is the
same as outenv(P1(x, env1)) except for these modifications to input ptr and input len. The
total runtime is the time to execute P1(x, env1), plus the execution time corresponding to the extra
lines for adjusting the input pointer and input length variables, plus the time to execute P2 on the
output from P1 in environment env2. The proof follows similarly for RAM programs.
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Lemma 47. Suppose P1 : X × E → Y × E is (d1 7→ {d2, t1})-jointly output/timing stable under
input distance metric dX and output distance metric dY . Similarly, suppose P2 : Y × E → Z × E
is (d2 7→ {d3, t2})-jointly output/timing stable under input distance metric dY and output distance
metric dZ . Then if P1 and P2 are chaining compatible, the chained program P2◦P1 : X ×E → Z×E
is (d1 7→ {d3, t1 + t2})-jointly output/timing stable.

Proof. We show that for every x, x′ satisfying dX (x, x
′) ≤ d1 under metric dX , every pair of

input-compatible execution environments env1, env
′
1 ∈ E , there exists a coupling ((ũ, ṽ), (ũ′, ṽ′))

of (out((P2 ◦ P1)(x, env1)), TP2◦P1
(x, env1)) and (out((P2 ◦ P1)(x

′, env′1)), T(P2◦P1)
(x′, env′1)) such

that dZ(ũ, ũ
′) ≤ d3 and |ṽ − ṽ′| ≤ t1 + t2 with probability 1.

We construct the coupling as follows. Let ((ũ1, ṽ1), (ũ
′
1, ṽ

′
1)) be the coupling associated with the joint

random variables (out(P1(x, env1)), TP1
(x, env1)) and (out(P1(x

′, env′1)), TP1
(x′, env′1)) satisfying

dY(ũ1, ũ
′
1) ≤ d2 and |ṽ1 − ṽ′1| ≤ t1 with probability 1 (by joint output/timing stability of P1).

Then condition on any fixed ((u1, v1), (u
′
1, v

′
1)) ∈ supp((ũ1, ṽ1), (ũ

′
1, ṽ

′
1)) and execution environ-

ments env2 and env′2 (conditioned on (u1, v1) and (u′1, v
′
1) respectively). Since dY(u1, u

′
1) ≤ d2, then

for every pair of execution environments env2, env
′
2 ∈ E , there exists a coupling ((ũ2, ṽ2), (ũ

′
2, ṽ

′
2)) of

the joint random variables (out(P2(u1, env2)), TP2
(u1, env2)) and (out(P2(u

′
1, env

′
2)), TP2

(u′1, env
′
2))

satisfying dZ(ũ2, ũ
′
2) ≤ d3 and |ṽ2 − ṽ′2| ≤ t2 with probability 1 (by joint output/timing stability of

P2).

We sample ((u2, v2), (u
′
2, v

′
2)) ∼ ((ũ2, ṽ2), (ũ

′
2, ṽ

′
2))|env2,env′2 and set:

(ũ, ṽ) = (u2, v1 + v2 + c)

≡ (out(P2(u1, env2)), TP1
(x, env1) + TP2

(u1, env2) + c)

≡ (out(P2(out(P1(x, env1)), env2)), TP1
(x, env1) + TP2

(out(P1(x, env1)), env2) + c)

≡ ((out((P2 ◦ P1)(x, env1)), TP2◦P1
(x, env1))

and similarly for (ũ′, ṽ′), where c is the chaining constant in Definition 44. It follows that:

dZ(ũ, ũ
′) ≤ d3

and

|ṽ − ṽ′| = |v1 + v2 + c− v′1 − v′2 − c|
= |v1 − v′1 + v2 − v′2|
≤ |v1 − v′1|+ |v2 − v′2|
≤ t1 + t2

Lemma 48. Suppose P1 : X × E → Y × E is (d1 7→ {d2, t1})-jointly output/timing stable under
input distance metric dX and output distance metric dY . Similarly, suppose P2 : Y × E → Z × E
is (d2 7→ t2)-OC timing stable under dY . Then if P1 and P2 are chaining compatible, the chained
program (P2 ◦ P1) : X × E → Z × E is (d1 7→ t1 + t2)-OC timing stable.

Proof. We show that for every x, x′ satisfying dX (x, x
′) ≤ d1 under metric dX , every pair of input-

compatible execution environments env1, env
′
1 ∈ E , and for every z ∈ supp((P2 ◦ P1)(x, env1)) ∩
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supp((P2 ◦ P1)(x
′, env′1)), there exists a coupling (w̃, w̃′) of TP2◦P1

(x, env1)|out((P2◦P1)(x,env1))=z and
T(P2◦P1)

(x′, env′1)|out((P2◦P1)(x′,env′1))=z such that |w̃ − w̃′| ≤ t1 + t2 with probability 1.

We construct the coupling as follows. Let ((ũ, ṽ), (ũ′, ṽ′)) be the coupling associated with the joint
random variables (out(P1(x, env1)), TP1

(x, env1)) and (out(P1(x
′, env′1)), TP1

(x′, env′1)) satisfying
dY(ũ, ũ

′) ≤ d2 and |ṽ − ṽ′| ≤ t1 with probability 1 (by joint output/timing stability).

Then condition on any fixed ((u, v), (u′, v′)) ∈ supp((ũ, ṽ), (ũ′, ṽ′)) and execution environments
env2 and env′2 (conditioned on (u, v) and (u′, v′) respectively). Since dY(u, u

′) ≤ d2, then for every
z ∈ supp(out(P2(u, env2))) ∩ supp(out(P2(u

′, env′2))), there exists a coupling (r̃, r̃′) of the con-
ditional runtime random variables TP2

(u, env2)|out(P2(u,env2))=z and TP2
(u′, env′2)|out(P2(u′,env′2))=z

satisfying |r̃ − r̃′| ≤ t2 (by output-conditional timing stability).

We sample (r, r′) ∼ (r̃, r̃′)|env2,env′2 and set:

w̃ = v + r + c

≡ TP1
(x, env1) + TP2

(u, env2)|out(P2(u,env2))=z + c

≡ TP1
(x, env1) + TP2

(out(P1(x, env1)), env2)|out(P2◦P1(x,env1))=z + c

≡ TP2◦P1
(x)|P2(P1(x))=z

and similarly for w′, where c is the chaining constant in Definition 44. It follows that

|w̃ − w̃′| = |u+ r + c− u′ − r′ − c|
= |u− u′ + r − r′|
≤ |u− u′|+ |r − r′|
≤ t1 + t2

Finally, we can chain together OC-timing-stable programs with timing-private delay programs
to achieve timing privacy:

Theorem 49. Let P1 : X ×E → Y ×E be (d1 7→ t1)-OC timing stable under input distance metric
dX . If P2 : Y × E → Y × E is a (t1 7→ d2)-timing-private delay program with respect to privacy
measure M, then P2 ◦ P1 is (d1 7→ d2)-timing private with respect to dX and M.

Proof. We want to show that for all pairs of x, x′ such that dX (x, x
′) ≤ d1, all pairs of input-

compatible environments env1, env
′
1, and all y ∈ supp(out(P1(x, env1)))∩ supp(out(P1(x

′, env′1))),

M(T(P2◦P1)
(x, env1)|out((P2◦P1)(x,env1))=y, T(P2◦P1)

(x′, env′1)|out((P2◦P1)(x′,env′1))=y) ≤ d2

Let Φ be the (t1 7→ d2)-timing private delay distribution implemented by P2, c is the chaining
constant used in Definition 44, and (r̃, r̃′) is the coupling of the conditional random variables
TP1

(x, env1)|out(P1(x,env1))=y and TP1
(x′, env′1)|out(P1(x′,env′1))=y satisfying |r̃ − r̃′| ≤ t1 (by output-

conditional timing stability). Let (r, r′) ∼ (r̃, r̃′) and env2 and env2 be conditioned on (r, y) and
(r′, y) respectively. Then,

r + c+Φ ≡ TP1
(x, env1)|out(P1(x,env1))=y + c+ ϕ

≡ TP1
(x, env1)|out(P1(x,env1))=y + c+ TP2

(y, env2)|out(P1(x,env1))=y

≡ T(P2◦P1)
(x, env1)|out((P2◦P1)(x,env1))=y
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and similarly r′ + c+Φ ≡ T(P2◦P1)
(x′, env′1)|out((P2◦P1)(x′,env′1))=y. Since Pr[|r − r′| ≤ t1] = 1, and Φ

is a timing-private delay distribution, it follows that for T ∼ Φ:

M(r + c+ T, r′ + c+ T ) ≤ d2

and therefore

M(T(P2◦P1)
(x, env1)|out((P2◦P1)(x,env1))=y, T(P2◦P1)

(x′, env′1)|out((P2◦P1)(x′,env′1))=y) ≤ d2

We now give prove a post-processing property for programs.

Lemma 50 (Post-processing Program Outputs). Let P1 : X × E → Y × E be (ε, δ)-differentially
private program under input metric dX and the smoothed max-divergence privacy measure. Let
P2 : Y ×E → Z ×E be a (possibly) randomized program that is output-pure (Definition 8). Then if
P2 and P1 are chaining compatible, the chained program P2◦P1 : X×E → Z×E is (ε, δ)-differentially
private under input metric dX and the smoothed max-divergence privacy measure Dδ

∞.

Proof. For all adjacent inputs x, x′ ∈ X under input metric dX , and all env1, env
′
1 ∈ E , we have

that Dδ
∞(out(P1(x, env1))||out(P1(x

′, env′1)) ≤ ε and Dδ
∞(out(P1(x

′, env′1))||out(P1(x, env1)) ≤ ε
by the fact that P1 is achieves (ε, δ)-differential privacy (Lemma 20). Since P2 is output-pure, for
all execution environments env2 ∈ E , out(P2(out(P1(x, env1)), env2) = f(out(P1(x, env1))) where
f : Y → Z is a (possibly randomized) function. By the post-processing property for approximate
DP (Lemma 22), it follows that for all env2, env

′
2 ∈ E :

Dδ
∞(out(P2(out(P1(x, env1)), env2))||out(P2(out(P1(x

′, env′1)), env
′
2)))

= Dδ
∞(f(out(P1(x, env1)))||f(out(P1(x

′, env′1))))

≤ Dδ
∞(out(P1(x, env1))||out(P1(x

′, env′1)))

≤ ε

and similarly for Dδ
∞(out(P2(out(P1(x

′, env′1)), env
′
2))||out(P2(out(P1(x, env1)), env2))).

Lemma 51. Let P1 : X × E → Y × E be (din 7→ dout)-differentially private with respect to input
distance metric dX and a privacy measure M . Let P2 : Y × E → Y × E be a timing-private
delay program such that P1 and P2 are chaining compatible. Then the chained program P2 ◦ P1 is
(din 7→ dout)-differentially private with respect to input metric dX and privacy measure M .

Proof. The proof follows from the fact that timing-private delay programs are output pure (Lemma 41)
and Lemma 50.

The post-processing property for DP (Lemma 22) states that arbitrary transformations applied
to differentially private outputs produces new outputs that remain differentially private. Unfor-
tunately, our definition of timing privacy is incompatible with post-processing. Timing privacy
bounds the additional information leakage caused by observing the program’s running time af-
ter observing the program’s output. However, post-processing can potentially destroy information
in the program’s output and this can result in unbounded additional information leakage in the
program’s runtime.
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To see this effect in action, consider a jointly output/timing-pure program P implementing
the identity function f(x) = x with the additional property that the runtime reveals something
about the input. That is, TP (x) = g(x) for a non-constant function g. Then P is (1 7→ 0)-
timing-private with respect to the change-one distance metric dCO and any privacy measure M
(e.g., max divergence). The identity function program satisfies perfect timing privacy despite its
running time being directly correlated with its input. This is due to the fact that P ’s output
already reveals the input and so the program’s running time reveals no additional information.
However, if we apply the simple post-processing step by chaining P with a deterministic, constant-
time program P ′ that sets output len = 0, then the result is no longer perfectly timing-private
since out((P ′ ◦ P )(x, env)) = λ7 while TP ′◦P (x, env) leaks information about the input (everything
about it if g is injective).

6.2 A Timing-Private Unbounded Noisy Sum

We illustrate the chaining operations above by chaining the Sum program (Program 2) with the
Discrete Laplace Mechanism (Program 4, given below) and our Timing-Private Delay Program
(Program 3).

We start by giving a Word RAM program for the Discrete Laplace Mechanism and analyze its
timing properties.

Lemma 52. The Discrete Laplace Word RAM program P : N × E → N × E (Program 4) is
output-pure and timing-pure.

Proof. The program only ever reads memory at location M [input ptr] (line 3) to obtain the
input and later writes the output to M [0]. Since the program’s execution does not depend on any
memory values beyond its input, then for all y ∈ N, the program’s output and runtime is identically
distributed on all pairs of input-compatible execution environments env, env′ ∈ E .

Lemma 53. Let P : N × E → N × E be the Discrete Laplace program (Program 4) with scale
parameter s = 1/ ln(b/a) = din/ε. Then P is (din 7→ ε)-DP with respect to input metric dN(y, y

′) =
|y − y′| and the max-divergence privacy measure.

Proof. We will show that for all for y, y′ satisfying |y − y′| ≤ dout, and all S ⊆ N, Pr[out(P2(y)) ∈
S]/Pr[out(P2(y

′)) ∈ S] ≤ eε. We ignore the execution environments in our analysis since P is
output-pure (Lemma 52).

The Discrete Laplace program first samples a value from a censored Discrete Laplace distribution
parameterized by a shift µ = y and scale s = 1/ ln(b/a) = dout/ε. The program works similarly to
Program 3 in how it samples from a Discrete Laplace distribution except that it does not bound
the number of trials when sampling from a Geometric distribution (lines 14-18). Since the Word
RAM model does not support values < 0 or > 2ω − 1, the result of noisy y = y− noise (line 20)
is always rounded to 0 when noise > y and the result of noisy y = y+ noise (line 22) is always
rounded to 2ω − 1. As a result, the program’s output is distributed as a censored Discrete Laplace
random variable with PMF f defined below:

f(z|µ = y, s = 1/ ln(b/a)) =


b−a
b+a

z = µ
1
2 ·

(
1− b−a

b+a

)
·
(
a
b

)|z−µ|−1 ·
(
1− a

b

)
0 < z < 2ω, z ̸= µ

1
2 ·

(
1− b−a

b+a

)
·
(
a
b

)|z−µ|−1
z = 0 or z = 2ω − 1

0 otherwise

7We use λ to indicate an empty output
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Program 4 Discrete Laplace Mechanism

Input: A number y ∈ N occupying memory location M [input ptr]

Output: max{y+DiscreteLaplace(µ = 0, s), 0} where DiscreteLaplace is defined as in Section 5.1
and s = 1/ ln(b/a). For the Word RAM version of the program, we require s < 2ω and a+ b < 2ω

and min{max{y +DiscreteLaplace(µ = 0, s), 0}, 2ω − 1} is output instead since the Word RAM
program outputs values in [0, 2ω).

1: output len = 1;
2: output ptr = 0;
3: y = M [input ptr];
4: noise = 0;
5: set = 0;
6: sign = RAND(1); {Pick a uniformly random noise direction (positive or negative)}
7: zprobA = b− a;
8: zprobB = b+ a;
9: idx = RAND(zprobB− 1);

10: if idx < zprobA then
11: set = 1; {sample 0 noise with probability b−a

b+a
}

12: else
13: set = 0;

14: while set == 0 do
15: noise = noise+ 1; {sample from a Geometric random variable with p = b−a

b
}

16: idx = RAND(b− 1);
17: if idx < b− a then
18: set = 1;

19: if sign == 0 then
20: noisy y = y− noise;
21: else
22: noisy y = y+ noise;

23: M [output ptr] = noisy y;
24: HALT;

It follows that for all y ∈ Y:

Pr[out(P2(y)) = y] =
b− a

b+ a

=
eln(b/a) − 1

eln(b/a) + 1

=
e1/s − 1

e1/s + 1

=
e1/s − 1

e1/s + 1
· e−|y−y|/s
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which matches the probability mass function for a Discrete Laplace distribution. Similarly, for
all y, z ∈ N, 0 < z < 2ω − 1, z ̸= y:

Pr[out(P2(y)) = z] =
1

2
·
(
1− b− a

b+ a

)
·
(a
b

)|z−y|−1 · (1− a

b
)

=
1

2
· (1− eln(b/a) − 1

eln(b/a) + 1
) · (e− ln(b/a))(|z−y|−1) · (1− e− ln(b/a))

=
1

2
· (1− e1/s − 1

e1/s + 1
) · (e−1/s)(|z−y|−1) · (1− e−1/s)

=
1

2
· (e

1/s + 1− e1/s + 1

e1/s + 1
) · (e−1/s)(|z−y|−1) · (1− e−1/s)

=
1

e1/s + 1
· (e−1/s)(|z−y|−1) · (1− e−1/s)

=
e(−|z−y|+1)/s − e−(|z−y|)/s

e1/s + 1

=
e1/s − 1

e1/s + 1
· e−|z−y|/s

Therefore, for all y, y′ ∈ N such that |y − y′| ≤ dout, and all 0 < z < 2ω − 1, we have:

Pr[out(P2(y)) = z]

Pr[out(P2(y′)) = z]
=

e−|z−y|/s

e−|z−y′|/s

= e(|z−y′|−|z−y|)/s

≤ e|y−y′|/s

≤ eε·|y−y′|/dout

≤ eε

Finally for z = 2ω − 1 or z = 0,

Pr[out(P2(y)) = z]

Pr[out(P2(y′)) = z]
=

(a/b)|z−y|−1

(a/b)|z−y′|−1

=
e− ln(b/a)·(|z−y|−1)

e− ln(b/a)·(|z−y′|−1)

=
e−(|z−y|−1)/s

e−(|z−y′|−1)/s

≤ e(|z−y′|−|z−y|)/s

≤ eε·|y−y′|/dout

≤ eε

Therefore, for all y, y′ satisfying |y − y′| ≤ dout, and all S ⊆ N, we have

Pr[out(P2(y)) ∈ S]

Pr[out(P2(y′)) ∈ S]
≤ eε

and the claim is satisfied.
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Lemma 54. Let P1 : X × E → N × E be the Sum Word RAM program (Program 2) and P2 :
N× E → N× E be the Discrete Laplace (Program 4) with scale parameter s = 1/ ln(b/a) satisfying
ln(b/a) = ε/∆. Then the chained program P2 ◦ P1 is ε-DP under the insert-delete distance metric
dID.

Proof. The proof follows from the fact that P1 is (1 7→ ∆)-output stable (Lemma 29 and Lemma 75)
and therefore P2 ◦ P1 is the Discrete Laplace mechanism executed on ∆-close inputs. The proof
follows from Lemma 53.

Lemma 55. For any din ∈ N, the Discrete Laplace program P : N × E → N × E (Program 4) is
(din 7→ 5 · din)-OC timing stable under the input distance metric dN defined as dN(x, x

′) = |x− x′|.

Proof. Conditioned on out(P (x, env)) = y, the program has deterministic runtime. The program’s
conditional runtime TP (x, env)|out(P (x,env))=y is equal to 15 + (5 · |x − y|) where 5 · |x − y| comes
from the number of loops that are executed in lines (14-18). The other 15 instructions are always
executed on every input (lines 1-10, 2 instructions depending on the branching condition in lines 10-
13, 2 instructions depending on the branching condition in lines 19-22, and lines 23-24). Therefore,
for all inputs x, x′ ∈ N, conditioned on output y ∈ N,

|TP (x, env)|out(P (x,env))=y − TP (x, env)|out(P (x,env))=y| = |15 + 5 · |x− y| − 15− 5 · |x′ − y||
= |5 · (|x− y| − |x′ − y|)|
≤ 5 · (|x− x′|)
= 5 · din

Lemma 56. Let P1 : X × E → N × E be the Sum program (Program 2) and P2 : N × E → N × E
be the Discrete Laplace program (Program 4). Then P2 ◦ P1 is (1 7→ 3 + 5∆)-OC timing stable
under the insert-delete distance metric dID on the input and the output distance metric dN defined
as dN(y, y

′) = |y − y′|.

Proof. Since P1 is (1 7→ {∆, 3})-jointly output/timing stable (Lemma 29), P2 is (din 7→ 5 · din)-
OC timing stable (Lemma 55), and P1 is chaining compatible with P2 (by Lemma 46), then by
Lemma 48, the chained program P2 ◦ P1 is (1 7→ 3 + 5 ·∆)-OC-timing stable.

Lemma 57. Let P1 : X×E → N×E be Program 2 (Sum), P2 : N×E → N×E be Program 4 (Discrete
Laplace) with scale parameter s1 = ∆/ε1, and P3 : Z × E → Z × E be Program 3 (Timing-Private
Delay) with scale parameter s2 = (3 + 5∆)/ε2 and shift µ. Then P3 ◦ (P2 ◦ P1) is ε1-differentially
private in its output and (ε2, δ)-timing private for δ = 2 · e−ε2(µ−(3+5∆))/(3+5∆).

Proof. The chained program P2 ◦ P1 : X × E → N × E is ε1-differentially private by Lemma 54.
Since P3 is a timing-private delay program (Lemma 42) it will compute a post-processing (identity
function) on the output of P2◦P1 and by Lemma 51 the chained program P3◦(P2◦P1) : X×E → N×E
is ε1-differentially private.

Since P2 ◦ P1 is (1 7→ 3 + 5∆)-OC timing stable (Lemma 56), and P3 is a (3 + 5∆ 7→ (ε2, δ))-
timing-private delay program for δ = 2 · e−ε2(µ−(3+5∆))/(3+5∆) (Lemma 42) under input distance
metric dN and the smoothed max-divergence privacy measure Dδ

∞, then by Theorem 49, the chained
program P3 ◦ (P2 ◦ P1) is (1 7→ (ε2, δ))-timing-private with respect to privacy measure Dδ

∞.

31



Note that Lemma 57 provides an ε1-DP mechanism that achieves ε2-timing privacy in the upper-
bounded DP model when the programs are Word RAM programs. Moreover, this construction is
much more efficient than the naive approach of padding execution time to the worst-case dataset
size nmax = 2ω − 1, which would result in slow runtimes for datasets with size n < nmax. In the
RAM model of computation, the construction yields a timing-private DP sum in the unbounded
DP model.

6.3 Composition of Timing-Private Programs

We can treat the composition of timing-private mechanisms similarly to how we treat chaining.
In particular, our framework supports the composition of timing-private programs that perform
intermediate DP computations.

Definition 58 (Composition-compatible Programs). We say that programs P1 : X × E → (X ×
Y)× E and P2 : (X × Y)× E → Z × E are composition-compatible if there is a program P2 ⊗ P1 :
X ×E → (Y×Z)×E and a constant c such that for all inputs x ∈ X and all execution environments
env1 ∈ E, there exists a (possibly random) input-compatible execution environment env2 ∈ E such
that we have:

out((P2 ⊗ P1)(x, env1)) = (out(P1(x, env1)), out(P2((x, out(P1(x, env1))), env2)))

and

T(P2⊗P1)
(x, env1) = TP1

(x, env1) + TP2
((x, out(P1(x, env1))), env2) + c.

Similar to the case of chaining-compatible programs, we allow the random variable env2 to be
arbitrarily correlated with the output and runtime of P1(x, env1), but it should be independent of
the coin tosses of P2.

Lemma 59 (Composition-compatible Word RAM Programs). Let program P1 : X×E → (X×Y)×E
be a RAM program that writes its unmodified input to

M [output ptr], . . . ,M [output ptr+ input len− 1]

and appends the rest of its output to M [output ptr+input len], . . . , M [output ptr+output len−
1]. Then P1 and P2 are composition-compatible for all programs P2 : (X × Y)× E → Z × E.

Proof. The proof for composition-compatible programs works similarly to that of chaining-compatible
programs. We replace the HALT at the end of P1 to set input len = output len and input ptr =
output ptr. The resulting program is an execution of P2 on input (x, y) in environment env2 that
is the same as outenv(P1(x, env1)) except for these modifications to input ptr and input len.

Remark 60. The proof follows for RAM programs also.

Lemma 61 (Composition of OC-Timing-Stable Programs). Let P1 : X × E → (X × Y) × E be
(d1 7→ t1)-OC timing stable with respect to the Y output coordinate8 and input distance metric dX .
Similarly, let P2 : (X × Y)× E → (Y ×Z)× E be (d1 7→ t2)-OC timing stable with respect to input
distance metric dX on its first input coordinate. If P1 and P2 are composition compatible, then the
composed program P2 ⊗ P1 is (d1 7→ t1 + t2)-OC timing stable.

8This means that we condition only on the y ∈ Y part of the output when considering OC-timing stability.
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Proof. For all x, x′ ∈ X satisfying dX (x, x
′) ≤ d1, all input-compatible environments env1, env

′
1 ∈ E ,

and all (y, z) ∈ supp(out((P2 ⊗P1)(x, env1)))∩ supp(out((P2 ⊗P1)(x
′, env′1))), we will construct a

coupling (r̃, r̃′) of T(P2⊗P1)
(x, env1)|out((P2⊗P1)(x,env1))=(y,z) and T(P2⊗P1)

(x′, env′1)|out((P2⊗P1)(x′,env′1))=(y,z)

such that |r̃ − r̃′| ≤ t1 + t2 with probability 1.

Observe that for all x, x′ ∈ X such that dX (x, x
′) ≤ d1, all env1, env

′
1 ∈ E , and all (·, y) ∈

supp(out(P1(x, env1))) ∩ supp(out(P1(x
′, env′1))), there exists a coupling (r̃1, r̃

′
1) of the condi-

tional random variables TP1
(x, env1)|out(P1(x,env1))=(x,y) and TP1

(x′, env′1)|out(P1(x′,env′1))=(x′,y) such
that |r̃1 − r̃′1| ≤ t1 (by the OC timing stability of P1).

For all such x, x′ and env1, env
′
1, take env2 and env′2 to be the execution environments satisfying:

T(P2⊗P1)
(x, env1) = TP1

(x, env1) + TP2
((x, out(P1(x, env1))), env2) + c

and

T(P2⊗P1)
(x′, env′1) = TP1

(x′, env′1) + TP2
((x′, out(P1(x

′, env′1))), env
′
2) + c

respectively (such an env2 and env′2 exist due to P1 and P2 being composition-compatible). Now
fix y ∈ supp(out(P1(x, env1))) ∩ supp(out(P1(x

′, env′1))). Then for all z such that

(y, z) ∈ supp(out(P2((x, y), env2))) ∩ supp(out(P2((x
′, y), env′2)))

there exists a coupling (r̃2, r̃
′
2) of the random variables TP2

((x, y), env2)|out(P2((x,y),env2))=(y,z) and
TP2

((x′, y), env′2)|out(P2((x′,y),env′2))=(y,z) such that |r̃2 − r̃′2| ≤ t2 (by the OC timing stability of P2).
We sample (r1, r

′
1) ∼ (r̃1, r̃

′
1) and sample env2 conditioned on (r1, y) and env′2 conditioned on

(r′1, y). We then samlpe (r2, r
′
2) ∼ (r̃2, r̃

′
2)|env2,env′2 and let

r̃ = r1 + r2 + c

= TP1
(x, env1)|out(P1(x,env1))=y + TP2

((x, y), env2)|out(P2((x,y),env1))=(y,z) + c

= T(P2⊗P1)
(x, env1)|out((P2⊗P1)(x,env1))=(y,z)

and similarly for r̃′, where c is the constant in Definition 58. It follows that

|r̃ − r̃′| = |r1 + r2 + c− r′1 − r′2 − c|
= |r1 − r′1 + r2 − r′2|
≤ |r1 − r′1|+ |r2 − r′2|
≤ t1 + t2

Lemma 61 shows that we can reason about timing stability when composing DP programs.
After analyzing the timing stability of the overall composed program, we can add a single timing
delay to protect the release from timing attacks. Alternatively, we can compose timing-private
programs such that composed program is also timing-private.

Lemma 62 (Composition of Timing-Private Programs). Let C : (M × M) → M be a valid
composition function for a privacy measure M ; meaning that if M(X1, X

′
1) ≤ d1 and M(X2|X1 =

x,X ′
2|X ′

1 = x′) ≤ d2 then M((X1, X2), (X
′
1, X

′
2)) ≤ C(d1, d2). Let P1 : X × E → (X × Y) × E be

(d0 7→ d1)-timing private with respect to its second output coordinate, input metric dX , and privacy
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measure M . Let P2 : (X × Y) × E → (Y × Z) × E be (d0 7→ d2)-timing private with respect to its
second output coordinate, input metric dX , and privacy measure M . If P1 and P2 be composition
compatible, then P1 ⊗ P2 : X × E → (Y ×Z)× E is (d0 7→ C(d1, d2))-timing-private with respect to
dX and privacy measure M .

Proof. By composition-compatibility, for all x ∈ X and input-compatible execution environments
env1, there exists an input-compatible execution environment env2 such that

TP2⊗P1
(x, env1) = TP1

(x, env1) + TP2
((x, out(P1(x, env1))), env2) + c

We can therefore analyze TP2⊗P1
(x, env1)|out((P2⊗P1)(x,env1)=(y,z) using the joint random variable:

(TP1
(x, env1)|out(P1(x,env1))=(x,y), TP2

((x, y), env2)|out(P2((x,y),env2))=(y,z))

and similarly for x′. Since P1 is timing-private with respect to input metric dX and privacy mea-
sure M , it follows that for all d1-close inputs x, x

′ ∈ X , all input-compatible execution environments
env1, env

′
1, and all y ∈ supp(out(P1(x, env1))) ∩ supp(out(P1(x

′, env′1)))

M(TP1
(x, env1)|out(P1(x,env1))=(x,y), TP1

(x′, env′1)|out(P1(x′,env′1))=(x′,y)) ≤ d1

Similarly, since P2 is timing-private with respect to input metric dX and privacy measure M ,
it follows that for all inputs (x, y), (x′, y) ∈ X × Y that are d1-close on their first coordinate, all
input-compatible execution environments env2, env

′
2, and all (y, z) ∈ supp(out(P2((x, y), env2)))∩

supp(out(P2((x
′, y), env′2)))

M(TP2
((x, y), env2)|out(P2((x,y),env2))=(y,z), TP2

((x′, y), env′2)|out(P2((x′,y),env′2))=(y,z)) ≤ d2

Let

Y = TP1
(x, env1)|out(P1(x,env1))=(x,y)

Y ′ = TP1
(x′, env′1)|out(P1(x′,env′1))=(x′,y)

Z = TP2
((x, y), env2)|out(P2((x,y),env2))=(y,z)

Z ′ = TP2
((x′, y), env′2)|out(P2((x′,y),env′2))=(y,z)

Then

M((Y,Z), (Y ′, Z ′)) ≤ C(M(Y, Y ′),M(Z,Z ′))

≤ C(d1, d2)

which is what we wanted to show.

The above composition theorem says that we can compose timing-private programs and keep
track of the overall timing privacy guarantees. For example, C((ε1, δ1), (ε2, δ2)) = (ε1+ε2, δ1+δ2) is
a valid composition function for approximate-DP (Lemma 23). Lemma 62 says that the composition
of a program P1 that is (ε1, δ1)-timing private with a program P2 that is (ε2, δ2)-timing private,
results in a new program that is (ε1 + ε2, δ1 + δ2)-timing private.

We can use the above fact to construct timing-private programs, for example, that compute DP
means from a timing-private DP sum program and a timing-private DP count program. The DP
sum and DP count can be interpreted as the numerator and denominator of the mean, respectively.
For example, Program 5 accepts as input (x, y) where x is a dataset and y is a DP sum over x.
By chaining together Program 5 with a (modified) Program 4, we obtain a program that outputs
a DP sum followed by a DP count.
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Program 5 Dataset Count Program

Input: A dataset x occupying memory locations M [0], . . . ,M [input len− 2] and a value y ∈ N
at memory location M [input len− 1]. The value y can be a (possibly DP) sum over the elements
M [0], . . . ,M [input len− 1], for example.

Output: The value y and the size of the dataset input len− 1.

1: output ptr = input len− 2;
2: output len = 2;
3: M [output ptr+ 1] = input len− 1;
4: HALT;

6.4 A Timing Private Unbounded Mean

We now give an example of how one can use composition-compatible programs to compute timing-
private DP means in the unbounded DP model.

Remark 63. In the following constructions, we will assume a modified version of the timing-private
DP sum program from Lemma 57 that instead writes its output in a composition-compatible way (by
appending its output to the end of its input and setting output ptr and output len accordingly).
This is a straight-forward modification that involves updating Program 2 and Program 4 so that
the original input is included in the chained program’s output. Similarly, when we chain together
Program 4 with Program 5, we will assume a modified version of the Discrete Laplace program
that accepts as input (y1, y2) and outputs (y1, y2 + η) where η is the noise drawn from the Discrete
Laplace distribution. We note that these changes can be made such that the stability claims for
Lemma 55 and Lemma 29 continue to hold by ensuring that the modifications incur some constant
additive overhead to the runtime.

Lemma 64. The Dataset Count program P : (X × N)× E → (N× N)× E (Program 5) is (din →
{din, 0})-jointly output/timing stable under the output distance metric dN on the second output
coordinate of (N× N) and the input distance metric dID.

Proof. The program always executes in 4 instructions and is therefore (din 7→ 0)-timing stable under
the input distance metric dID (Lemma 70). If you add or remove a row from the dataset x ∈ X ,
then the count changes by at most din. Therefore, the program is (din 7→ din)-output stable (with
respect to its second output coordinate) under the output distance metric dN and input metric
dID. Since the program is deterministic in its output, the program satisfies (din 7→ {din, 0})-joint
output/timing stability (Lemma 28).

Lemma 65. Let P1 : (X ×N)× E → (N×N)× E be the Dataset Count program (Program 5) and
P2 : (N×N)×E → (N×N)×E be the Discrete Laplace program (Program 4) modified according to
Remark 63 with s = 1/ε2 = 1/ ln(b/a). Then P2 ◦P1 : (X ×N)×E → (N×N)×E is ε2-differentially
private under the max-divergence privacy measure with respect to the 2nd coordinate of (N × N)
and the input distance dID.

Proof. P1 is (din 7→ din)-output stable with respect to input distance metric dID and output distance
metric dN on the second output coordinate of (N× N) (Lemma 64 and Lemma 75). Therefore the
proof follows exactly by Lemma 53 since P2 ◦ P1 is the Discrete Laplace program executed on
din-close inputs under the input distance dN(n, n

′) = |n− n′|.
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Lemma 66. Let P1 : (X × N) × E → (N × N) × E be the Dataset Count program (Program 5),
and P2 : (N × N) → (N × N) × E be the Discrete Laplace program (Program 4) modified according
to Remark 63. Then the chained program P2 ◦ P1 : (X × N) → (N × N) × E is (din 7→ 5 · din)-OC
timing stable under the insert-delete distance metric dID.

Proof. The dataset count program is constant-time and therefore (din 7→ {din, 0})-jointly out-
put/timing stable under dID. By Lemma 55 and Lemma 48, we have that the chained program is
(din 7→ 5 · din)-OC timing stable under dID.

Lemma 67. Let P1 : (X ×N)×E → (N×N)×E be the Dataset Count program (Program 5), and
P2 : (N × N) → (N × N) × E be the Discrete Laplace program (Program 4) modified according to
Remark 63, with scale parameter s1 = 1/ε1. Let P3 : Z×E → Z×E be Program 3 (Timing-Private
Delay) with scale parameter s2 = 5/ε2 and shift µ. Then P3 ◦ (P2 ◦ P1) is ε1-differentially private
in its output and (ε2, δ)-timing private for δ = 2 · eε2(µ−5)/5.

Proof. The chained program P2 ◦ P1 : X × E → N × E is ε1-differentially private by Lemma 65.
Since P3 is a timing-private delay program (Lemma 42) it will compute a post-processing (identity
function) on the output of P2◦P1 and by Lemma 51 the chained program P3◦(P2◦P1) : X×E → N×E
is ε1-differentially private.

Since P2 ◦P1 is (1 7→ 5)-OC timing stable (Lemma 66), and P3 is a (5 7→ (ε2, δ))-timing-private
delay program for δ = 2 ·e−ε2(µ−5)/5 (Lemma 42) under input distance metric dN and the smoothed
max-divergence privacy measure Dδ

∞, then by Theorem 49, the chained program P3 ◦ (P2 ◦ P1) is
(1 7→ (ε2, δ))-timing-private with respect to privacy measure Dδ

∞.

Lemma 68. Let P1 : X × E → (X × Y)× E be the ε1-DP and (ε2, δ)-timing-private sum program
(Lemma 57) that has been modified according to Remark 63. Let P2 : (X × N)× E → (N× N)× E
be the ε1-DP and (ε2, δ)-timing-private dataset count program (Lemma 67). Then P1 and P2 are
composition-compatible.

Proof. Observe that, due to the modifications from Remark 63, P1 writes to its output the original
dataset x ∈ X followed by the DP sum y ∈ N. By Lemma 59 the claim follows.

Lemma 69. Let P1 : X × E → (X × Y)× E be the ε1-DP and (ε2, δ)-timing-private sum program
(Lemma 57) that has been modified according to Remark 63. Let P2 : (X ×N)×E → (N×N)×E be
the ε1-DP and (ε2, δ)-timing-private dataset count program (Lemma 67). Then P2 ⊗ P1 : X × E →
(N× N)× E is 2ε1-DP and (2ε2, 2δ)-timing-private.

Proof. The first output coordinate of P2⊗P1 is the output of P1, and the second output coordinate
of P2 ⊗ P1 is the output of P2. Since P1 is ε1-DP under input metric dID and output metric dN
(Lemma 54), and P2 is ε1-DP under input metric dID and output metric dN (Lemma 65), it follows
that for all x, x′ ∈ X satisfying dID(x, x

′) ≤ 1, all input-compatible env1, env
′
1, env2, env

′
2 ∈ E , and

all (S1, S2) ⊆ (N× N):

Pr[out((P2 ⊗ P1)(x, env1)) ∈ (S1, S2)]

= Pr[out(P1(x, env1)) ∈ S1] · Pr[out(P2((x, out(P1(x, env1))), env2)) ∈ S2]

≤ eε1 · Pr[out(P1(x
′, env′1)) ∈ S1] · eε2 · Pr[out(P2((x

′, out(P1(x
′, env′1))), env

′
2)) ∈ S2]

≤ eε1+ε2 · Pr[out((P2 ⊗ P1)(x
′, env′1)) ∈ (S1, S2)]

Therefore, P2 ⊗ P1 is 2ε1-DP with respect to input metric dID and the max-divergence privacy
measure. The claim that P2 ⊗P1 is (2ε2, 2δ)-timing-private follows from the fact that P1 is (ε2, δ)-
timing-private, P2 is (ε2, δ)-timing-private, and Lemma 62 and letting C((ε, δ), (ε, δ)) = (2ε, 2δ) be
the composition function by Lemma 23.
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7 Implementation

A proof-of-concept implementation of our framework on top of the OpenDP library in available in
the Github repository [SVM+]. The proof of concept supports defining timing stability maps for
transformations and output-conditional timing stability maps for measurements. We additionally
implemented a proof-of-concept timing-private delay function that can be chained with arbitrary
output-conditional timing stable measurements to delay their output release.

The purpose of the implementation is to illustrate the compatibility of our framework with
existing differential privacy libraries, not to claim that the implementation provides timing privacy
for physical executions. As discussed in Section 1.2, we leave for future work the problem of
instantiating our framework for physical timing channels, which would involve constraining the
execution environment, identifying the appropriate units to measure timing, and finding realistic
upper bounds on actual timing-stability constants.
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A Stability Proofs

Lemma 70. A program P : X × E → Y × E is (din 7→ 0)-timing-stable if for all pairs of inputs
x, x′ ∈ X , and all input-compatible execution environments env, env′ ∈ E, TP (x, env) ≡ TP (x

′, env′).

Proof. For any two inputs x and x′, take the coupling (r̃, r̃′) to be (TP (x, env), TP (x, env)). Since
TP (x, env) ≡ TP (x

′, env′), it follows that the marginal distributions of r̃ and r̃′ are identical to
TP (x, env) and TP (x

′, env′), and |r̃ − r̃′| = 0.

Lemma 71. If P : X × E → Y × E satisfies for all x ∈ X , env ∈ E, TP (x, env) = c for some
constant c, then P is (din 7→ 0)-timing stable.

Proof. Since P is constant time, TP (x, env) = c for all x and env, then for all x, x′ and input-
compatible env, env′, TP (x, env) ≡ TP (x

′, env′) and the claim follows from Lemma 70.

Lemma 72. If P : X × E → Y × E is deterministic (in its output) and is (din 7→ tout)-timing
stable, then P is (din 7→ tout)-OC-timing stable.

Proof. For all x and x′ satisfying dX (x, x
′) ≤ din, and any pair of environments env, env′ ∈ E , either

out(P (x, env)) ̸= out(P (x′, env′)) or out(P (x, env)) = out(P (x′, env′)). If out(P (x, env)) ̸=
out(P (x′, env′)), then there is no requirement on the distributional closeness of TP (x, env) and
TP (x

′, env′) and the claim is satisfied. Now suppose that out(P (x, env)) = out(P (x′, env′)) = y.
By the timing stability of P there exists a coupling (r̃, r̃′) of the random variables TP (x, env) and
TP (x

′, env′) such that |r̃ − r̃′| ≤ tout. Since P is deterministic it also follows that r̃ and r̃′ have
the same marginal distributions as TP (x, env)|out(P (x,env))=y and TP (x

′)|out(P (x′,env′))=y respectively,
and the claim holds.

Lemma 73. If P : X × E → Y × E has constant runtime then P is (din → 0)-OC timing stable.

Proof. Since P is constant time, TP (x, env) = c for all x and env. For all y ∈ supp(out(P (x, env)))∩
supp(out(P (x′, env′))) with dX (x, x

′) ≤ din, let the coupling (r̃, r̃′) of TP (x, env)|out(P (x,env))=y

and TP (x
′, env′)|out(P (x′,env′))=y take the value (c, c). Then r̃ and r̃′ are identically distributed to

TP (x, env)|out(P (x,env))=y and TP (x
′, env′)|out(P (x′,env′))=y respectively, and |r̃− r̃′| = |c− c| = 0.

Lemma 74. Jointly output/timing-stable programs are timing-stable programs.

Proof. If P : X × E → Y × E is (din 7→ {dout, tout})-jointly output/timing stable with respect to
input metric dX , then for every x, x′ ∈ X satisfying dX (x, x

′) ≤ din and all pairs of execution
environments env, env′ ∈ E , there exists a coupling ((ũ, r̃), (ũ′, r̃′)) of the joint random variables
(out(P (x, env)), TP (x, env)) and (out(P (x′, env′)), TP (x

′, env′)) satisfying Pr[|r̃ − r̃′| < tout] = 1.
Take (r̃, r̃′) to be the coupling of the random variables TP (x, env) and TP (x

′, env′) and the claim
follows.

Lemma 75. Jointly output/timing-stable programs are output-stable programs.

Proof. If P : X × E → Y × E is (din 7→ {dout, tout})-jointly output/timing stable with respect
to input metric dX and output metric dY , then for every x, x′ ∈ X satisfying dX (x, x

′) ≤ din
and all pairs of execution environments env, env′ ∈ E , there exists a coupling ((ũ, r̃), (ũ′, r̃′)) of
the joint random variables (out(P (x, env)), TP (x, env)) and (out(P (x′, env′)), TP (x

′, env′)) satisfy-
ing dY(ũ, ũ

′) ≤ dout with probability 1. Take (ũ, ũ′) to be the coupling of the random variables
out(P (x, env)) and out(P (x′, env′)) and the claim follows.
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